@@ -1557,11 +1557,10 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
15571557 // FIXME(#75598): Direct use of these intrinsics improves codegen significantly at opt-level <=
15581558 // 1, where the method versions of these operations are not inlined.
15591559 use intrinsics:: {
1560- unchecked_shl, unchecked_shr, unchecked_sub, wrapping_add, wrapping_mul, wrapping_sub,
1560+ cttz_nonzero, exact_div, unchecked_rem, unchecked_shl, unchecked_shr, unchecked_sub,
1561+ wrapping_add, wrapping_mul, wrapping_sub,
15611562 } ;
15621563
1563- let addr = p. addr ( ) ;
1564-
15651564 /// Calculate multiplicative modular inverse of `x` modulo `m`.
15661565 ///
15671566 /// This implementation is tailored for `align_offset` and has following preconditions:
@@ -1611,36 +1610,61 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
16111610 }
16121611 }
16131612
1613+ let addr = p. addr ( ) ;
16141614 let stride = mem:: size_of :: < T > ( ) ;
16151615 // SAFETY: `a` is a power-of-two, therefore non-zero.
16161616 let a_minus_one = unsafe { unchecked_sub ( a, 1 ) } ;
1617- if stride == 1 {
1618- // `stride == 1` case can be computed more simply through `-p (mod a)`, but doing so
1619- // inhibits LLVM's ability to select instructions like `lea`. Instead we compute
1617+
1618+ if stride == 0 {
1619+ // SPECIAL_CASE: handle 0-sized types. No matter how many times we step, the address will
1620+ // stay the same, so no offset will be able to align the pointer unless it is already
1621+ // aligned. This branch _will_ be optimized out as `stride` is known at compile-time.
1622+ let p_mod_a = addr & a_minus_one;
1623+ return if p_mod_a == 0 { 0 } else { usize:: MAX } ;
1624+ }
1625+
1626+ // SAFETY: `stride == 0` case has been handled by the special case above.
1627+ let a_mod_stride = unsafe { unchecked_rem ( a, stride) } ;
1628+ if a_mod_stride == 0 {
1629+ // SPECIAL_CASE: In cases where the `a` is divisible by `stride`, byte offset to align a
1630+ // pointer can be computed more simply through `-p (mod a)`. In the off-chance the byte
1631+ // offset is not a multiple of `stride`, the input pointer was misaligned and no pointer
1632+ // offset will be able to produce a `p` aligned to the specified `a`.
16201633 //
1621- // round_up_to_next_alignment(p, a) - p
1634+ // The naive `-p (mod a)` equation inhibits LLVM's ability to select instructions
1635+ // like `lea`. We compute `(round_up_to_next_alignment(p, a) - p)` instead. This
1636+ // redistributes operations around the load-bearing, but pessimizing `and` instruction
1637+ // sufficiently for LLVM to be able to utilize the various optimizations it knows about.
16221638 //
1623- // which distributes operations around the load-bearing, but pessimizing `and` sufficiently
1624- // for LLVM to be able to utilize the various optimizations it knows about.
1625- return wrapping_sub ( wrapping_add ( addr, a_minus_one) & wrapping_sub ( 0 , a) , addr) ;
1626- }
1639+ // LLVM handles the branch here particularly nicely. If this branch needs to be evaluated
1640+ // at runtime, it will produce a mask `if addr_mod_stride == 0 { 0 } else { usize::MAX }`
1641+ // in a branch-free way and then bitwise-OR it with whatever result the `-p mod a`
1642+ // computation produces.
1643+
1644+ // SAFETY: `stride == 0` case has been handled by the special case above.
1645+ let addr_mod_stride = unsafe { unchecked_rem ( addr, stride) } ;
16271646
1628- let pmoda = addr & a_minus_one;
1629- if pmoda == 0 {
1630- // Already aligned. Yay!
1631- return 0 ;
1632- } else if stride == 0 {
1633- // If the pointer is not aligned, and the element is zero-sized, then no amount of
1634- // elements will ever align the pointer.
1635- return usize:: MAX ;
1647+ return if addr_mod_stride == 0 {
1648+ let aligned_address = wrapping_add ( addr, a_minus_one) & wrapping_sub ( 0 , a) ;
1649+ let byte_offset = wrapping_sub ( aligned_address, addr) ;
1650+ // SAFETY: `stride` is non-zero. This is guaranteed to divide exactly as well, because
1651+ // addr has been verified to be aligned to the original type’s alignment requirements.
1652+ unsafe { exact_div ( byte_offset, stride) }
1653+ } else {
1654+ usize:: MAX
1655+ } ;
16361656 }
16371657
1638- let smoda = stride & a_minus_one;
1658+ // GENERAL_CASE: From here on we’re handling the very general case where `addr` may be
1659+ // misaligned, there isn’t an obvious relationship between `stride` and `a` that we can take an
1660+ // advantage of, etc. This case produces machine code that isn’t particularly high quality,
1661+ // compared to the special cases above. The code produced here is still within the realm of
1662+ // miracles, given the situations this case has to deal with.
1663+
16391664 // SAFETY: a is power-of-two hence non-zero. stride == 0 case is handled above.
1640- let gcdpow = unsafe { intrinsics :: cttz_nonzero ( stride) . min ( intrinsics :: cttz_nonzero ( a) ) } ;
1665+ let gcdpow = unsafe { cttz_nonzero ( stride) . min ( cttz_nonzero ( a) ) } ;
16411666 // SAFETY: gcdpow has an upper-bound that’s at most the number of bits in a usize.
16421667 let gcd = unsafe { unchecked_shl ( 1usize , gcdpow) } ;
1643-
16441668 // SAFETY: gcd is always greater or equal to 1.
16451669 if addr & unsafe { unchecked_sub ( gcd, 1 ) } == 0 {
16461670 // This branch solves for the following linear congruence equation:
@@ -1656,14 +1680,13 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
16561680 // ` p' + s'o = 0 mod a' `
16571681 // ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
16581682 //
1659- // The first term is "the relative alignment of `p` to `a`" (divided by the `g`), the second
1660- // term is "how does incrementing `p` by `s` bytes change the relative alignment of `p`" (again
1661- // divided by `g`).
1662- // Division by `g` is necessary to make the inverse well formed if `a` and `s` are not
1663- // co-prime.
1683+ // The first term is "the relative alignment of `p` to `a`" (divided by the `g`), the
1684+ // second term is "how does incrementing `p` by `s` bytes change the relative alignment of
1685+ // `p`" (again divided by `g`). Division by `g` is necessary to make the inverse well
1686+ // formed if `a` and `s` are not co-prime.
16641687 //
16651688 // Furthermore, the result produced by this solution is not "minimal", so it is necessary
1666- // to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
1689+ // to take the result `o mod lcm(s, a)`. This `lcm(s, a)` is the same as `a'`.
16671690
16681691 // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
16691692 // `a`.
@@ -1673,11 +1696,11 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
16731696 let a2minus1 = unsafe { unchecked_sub ( a2, 1 ) } ;
16741697 // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
16751698 // `a`.
1676- let s2 = unsafe { unchecked_shr ( smoda , gcdpow) } ;
1699+ let s2 = unsafe { unchecked_shr ( stride & a_minus_one , gcdpow) } ;
16771700 // SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
16781701 // `a`. Furthermore, the subtraction cannot overflow, because `a2 = a >> gcdpow` will
16791702 // always be strictly greater than `(p % a) >> gcdpow`.
1680- let minusp2 = unsafe { unchecked_sub ( a2, unchecked_shr ( pmoda , gcdpow) ) } ;
1703+ let minusp2 = unsafe { unchecked_sub ( a2, unchecked_shr ( addr & a_minus_one , gcdpow) ) } ;
16811704 // SAFETY: `a2` is a power-of-two, as proven above. `s2` is strictly less than `a2`
16821705 // because `(s % a) >> gcdpow` is strictly less than `a >> gcdpow`.
16831706 return wrapping_mul ( minusp2, unsafe { mod_inv ( s2, a2) } ) & a2minus1;
0 commit comments