11
2- # Machine Learning Benchmarks
2+ # Machine Learning Benchmarks <!-- omit in toc -->
33
44[ ![ Build Status] ( https://dev.azure.com/daal/scikit-learn_bench/_apis/build/status/IntelPython.scikit-learn_bench?branchName=master )] ( https://dev.azure.com/daal/scikit-learn_bench/_build/latest?definitionId=8&branchName=master )
55
@@ -10,7 +10,7 @@ and algorithms. It currently supports the [scikit-learn](https://scikit-learn.or
1010and [ XGBoost] ( https://github.com/dmlc/xgboost ) frameworks for commonly used
1111[ machine learning algorithms] ( #supported-algorithms ) .
1212
13- ## Follow us on Medium
13+ ## Follow us on Medium <!-- omit in toc -->
1414
1515We publish blogs on Medium, so [ follow us] ( https://medium.com/intel-analytics-software/tagged/machine-learning ) to learn tips and tricks for more efficient data analysis. Here are our latest blogs:
1616
@@ -28,13 +28,13 @@ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-so
2828- [ Accelerate K-Means Clustering] ( https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1 )
2929- [ Fast Gradient Boosting Tree Inference] ( https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55 )
3030
31- ## Table of content
31+ ## Table of content <!-- omit in toc -->
3232
3333- [ How to create conda environment for benchmarking] ( #how-to-create-conda-environment-for-benchmarking )
3434- [ Running Python benchmarks with runner script] ( #running-python-benchmarks-with-runner-script )
3535- [ Benchmark supported algorithms] ( #benchmark-supported-algorithms )
36- - [ Intel(R) Extension for Scikit-learn* support ] ( #intelr-extension-for- scikit-learn-support )
37- - [ Algorithms parameters] ( #algorithms -parameters )
36+ - [ Scikit-learn benchmakrs ] ( #scikit-learn-benchmakrs )
37+ - [ Algorithm parameters] ( #algorithm -parameters )
3838
3939## How to create conda environment for benchmarking
4040
@@ -100,37 +100,30 @@ The configuration of benchmarks allows you to select the frameworks to run, sele
100100
101101## Benchmark supported algorithms
102102
103- | algorithm | benchmark name | sklearn | daal4py | cuml | xgboost |
104- | ---| ---| ---| ---| ---| ---|
105- | ** [ DBSCAN] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ) ** | dbscan| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
106- | ** [ RandomForestClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html ) ** | df_clfs| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
107- | ** [ RandomForestRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html ) ** | df_regr| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
108- | ** [ pairwise_distances] ( https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html ) ** | distances| :white_check_mark : | :white_check_mark : | :x : | :x : |
109- | ** [ KMeans] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html ) ** | kmeans| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
110- | ** [ KNeighborsClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html ) ** | knn_clsf| :white_check_mark : | :x : | :white_check_mark : | :x : |
111- | ** [ LinearRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html ) ** | linear| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
112- | ** [ LogisticRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html ) ** | log_reg| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
113- | ** [ PCA] ( https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html ) ** | pca| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
114- | ** [ Ridge] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html ) ** | ridge| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
115- | ** [ SVM] ( https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html ) ** | svm| :white_check_mark : | :white_check_mark : | :white_check_mark : | :x : |
116- | ** [ train_test_split] ( https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ) ** | train_test_split| :white_check_mark : | :x : | :white_check_mark : | :x : |
117- | ** [ GradientBoostingClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html ) ** | gbt| :x : | :x : | :x : | :white_check_mark : |
118- | ** [ GradientBoostingRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html ) ** | gbt| :x : | :x : | :x : | :white_check_mark : |
119-
120- ## Intel(R) Extension for Scikit-learn support
103+ | algorithm | benchmark name | sklearn (CPU) | sklearn (GPU) | daal4py | cuml | xgboost |
104+ | ---| ---| ---| ---| ---| ---| --- |
105+ | ** [ DBSCAN] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html ) ** | dbscan| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
106+ | ** [ RandomForestClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html ) ** | df_clfs| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
107+ | ** [ RandomForestRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html ) ** | df_regr| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
108+ | ** [ pairwise_distances] ( https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html ) ** | distances| :white_check_mark : | :x : | : white_check_mark :| :x : | :x : |
109+ | ** [ KMeans] ( https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html ) ** | kmeans| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
110+ | ** [ KNeighborsClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html ) ** | knn_clsf| :white_check_mark : | :x : | :x : | : white_check_mark :| :x : |
111+ | ** [ LinearRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html ) ** | linear| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
112+ | ** [ LogisticRegression] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html ) ** | log_reg| :white_check_mark : | :white_check_mark : | :white_check_mark : | :white_check_mark : | : x :|
113+ | ** [ PCA] ( https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html ) ** | pca| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
114+ | ** [ Ridge] ( https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html ) ** | ridge| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
115+ | ** [ SVM] ( https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html ) ** | svm| :white_check_mark : | :x : | : white_check_mark :| :white_check_mark : | :x : |
116+ | ** [ train_test_split] ( https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ) ** | train_test_split| :white_check_mark : | :x : | :x : | : white_check_mark :| :x : |
117+ | ** [ GradientBoostingClassifier] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html ) ** | gbt| :x : | :x : | :x : | :x : | : white_check_mark :|
118+ | ** [ GradientBoostingRegressor] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html ) ** | gbt| :x : | :x : | :x : | :x : | : white_check_mark :|
119+
120+ ### Scikit-learn benchmakrs
121121
122122When you run scikit-learn benchmarks on CPU, [ Intel(R) Extension for Scikit-learn] ( https://github.com/intel/scikit-learn-intelex ) is used by default. Use the `` --no-intel-optimized `` option to run the benchmarks without the extension.
123123
124- The following benchmarks have a GPU support:
124+ For the algorithms with both CPU and GPU support, you may use the same [ configuration file ] ( https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json ) to run the scikit-learn benchmarks on CPU and GPU.
125125
126- - dbscan
127- - kmeans
128- - linear
129- - log_reg
130-
131- You may use the [ configuration file for these benchmarks] ( https://github.com/IntelPython/scikit-learn_bench/blob/master/configs/skl_xpu_config.json ) to run them on both CPU and GPU.
132-
133- ## Algorithms parameters
126+ ## Algorithm parameters
134127
135128You can launch benchmarks for each algorithm separately.
136129To do this, go to the directory with the benchmark:
0 commit comments