|
14 | 14 | # See the License for the specific language governing permissions and |
15 | 15 | # limitations under the License. |
16 | 16 |
|
17 | | -import ctypes |
18 | | - |
19 | 17 | import numpy as np |
20 | 18 | import pytest |
21 | 19 |
|
22 | | -import dpctl |
23 | 20 | import dpctl.tensor as dpt |
24 | 21 | from dpctl.tests.helper import get_queue_or_skip, skip_if_dtype_not_supported |
25 | 22 |
|
26 | | -from .utils import _compare_dtypes, _no_complex_dtypes, _usm_types |
| 23 | +from .utils import _compare_dtypes, _no_complex_dtypes |
27 | 24 |
|
28 | 25 |
|
29 | 26 | @pytest.mark.parametrize("op1_dtype", _no_complex_dtypes[1:]) |
@@ -58,136 +55,3 @@ def test_hypot_dtype_matrix(op1_dtype, op2_dtype): |
58 | 55 | assert _compare_dtypes(r.dtype, expected.dtype, sycl_queue=q) |
59 | 56 | assert r.shape == ar3.shape |
60 | 57 | assert (dpt.asnumpy(r) == expected.astype(r.dtype)).all() |
61 | | - |
62 | | - |
63 | | -@pytest.mark.parametrize("op1_usm_type", _usm_types) |
64 | | -@pytest.mark.parametrize("op2_usm_type", _usm_types) |
65 | | -def test_hypot_usm_type_matrix(op1_usm_type, op2_usm_type): |
66 | | - get_queue_or_skip() |
67 | | - |
68 | | - sz = 128 |
69 | | - ar1 = dpt.ones(sz, dtype="i4", usm_type=op1_usm_type) |
70 | | - ar2 = dpt.ones_like(ar1, dtype="i4", usm_type=op2_usm_type) |
71 | | - |
72 | | - r = dpt.hypot(ar1, ar2) |
73 | | - assert isinstance(r, dpt.usm_ndarray) |
74 | | - expected_usm_type = dpctl.utils.get_coerced_usm_type( |
75 | | - (op1_usm_type, op2_usm_type) |
76 | | - ) |
77 | | - assert r.usm_type == expected_usm_type |
78 | | - |
79 | | - |
80 | | -def test_hypot_order(): |
81 | | - get_queue_or_skip() |
82 | | - |
83 | | - ar1 = dpt.ones((20, 20), dtype="i4", order="C") |
84 | | - ar2 = dpt.ones((20, 20), dtype="i4", order="C") |
85 | | - r1 = dpt.hypot(ar1, ar2, order="C") |
86 | | - assert r1.flags.c_contiguous |
87 | | - r2 = dpt.hypot(ar1, ar2, order="F") |
88 | | - assert r2.flags.f_contiguous |
89 | | - r3 = dpt.hypot(ar1, ar2, order="A") |
90 | | - assert r3.flags.c_contiguous |
91 | | - r4 = dpt.hypot(ar1, ar2, order="K") |
92 | | - assert r4.flags.c_contiguous |
93 | | - |
94 | | - ar1 = dpt.ones((20, 20), dtype="i4", order="F") |
95 | | - ar2 = dpt.ones((20, 20), dtype="i4", order="F") |
96 | | - r1 = dpt.hypot(ar1, ar2, order="C") |
97 | | - assert r1.flags.c_contiguous |
98 | | - r2 = dpt.hypot(ar1, ar2, order="F") |
99 | | - assert r2.flags.f_contiguous |
100 | | - r3 = dpt.hypot(ar1, ar2, order="A") |
101 | | - assert r3.flags.f_contiguous |
102 | | - r4 = dpt.hypot(ar1, ar2, order="K") |
103 | | - assert r4.flags.f_contiguous |
104 | | - |
105 | | - ar1 = dpt.ones((40, 40), dtype="i4", order="C")[:20, ::-2] |
106 | | - ar2 = dpt.ones((40, 40), dtype="i4", order="C")[:20, ::-2] |
107 | | - r4 = dpt.hypot(ar1, ar2, order="K") |
108 | | - assert r4.strides == (20, -1) |
109 | | - |
110 | | - ar1 = dpt.ones((40, 40), dtype="i4", order="C")[:20, ::-2].mT |
111 | | - ar2 = dpt.ones((40, 40), dtype="i4", order="C")[:20, ::-2].mT |
112 | | - r4 = dpt.hypot(ar1, ar2, order="K") |
113 | | - assert r4.strides == (-1, 20) |
114 | | - |
115 | | - |
116 | | -def test_hypot_broadcasting(): |
117 | | - get_queue_or_skip() |
118 | | - |
119 | | - m = dpt.ones((100, 5), dtype="i4") |
120 | | - v = dpt.arange(1, 6, dtype="i4") |
121 | | - |
122 | | - r = dpt.hypot(m, v) |
123 | | - |
124 | | - expected = np.hypot( |
125 | | - np.ones((100, 5), dtype="i4"), np.arange(1, 6, dtype="i4") |
126 | | - ) |
127 | | - tol = 8 * np.finfo(r.dtype).resolution |
128 | | - assert np.allclose( |
129 | | - dpt.asnumpy(r), expected.astype(r.dtype), atol=tol, rtol=tol |
130 | | - ) |
131 | | - |
132 | | - r2 = dpt.hypot(v, m) |
133 | | - expected2 = np.hypot( |
134 | | - np.arange(1, 6, dtype="i4"), np.ones((100, 5), dtype="i4") |
135 | | - ) |
136 | | - assert np.allclose( |
137 | | - dpt.asnumpy(r2), expected2.astype(r2.dtype), atol=tol, rtol=tol |
138 | | - ) |
139 | | - |
140 | | - |
141 | | -@pytest.mark.parametrize("arr_dt", _no_complex_dtypes[1:]) |
142 | | -def test_hypot_python_scalar(arr_dt): |
143 | | - q = get_queue_or_skip() |
144 | | - skip_if_dtype_not_supported(arr_dt, q) |
145 | | - |
146 | | - X = dpt.ones((10, 10), dtype=arr_dt, sycl_queue=q) |
147 | | - py_ones = ( |
148 | | - bool(1), |
149 | | - int(1), |
150 | | - float(1), |
151 | | - np.float32(1), |
152 | | - ctypes.c_int(1), |
153 | | - ) |
154 | | - for sc in py_ones: |
155 | | - R = dpt.hypot(X, sc) |
156 | | - assert isinstance(R, dpt.usm_ndarray) |
157 | | - R = dpt.hypot(sc, X) |
158 | | - assert isinstance(R, dpt.usm_ndarray) |
159 | | - |
160 | | - |
161 | | -class MockArray: |
162 | | - def __init__(self, arr): |
163 | | - self.data_ = arr |
164 | | - |
165 | | - @property |
166 | | - def __sycl_usm_array_interface__(self): |
167 | | - return self.data_.__sycl_usm_array_interface__ |
168 | | - |
169 | | - |
170 | | -def test_hypot_mock_array(): |
171 | | - get_queue_or_skip() |
172 | | - a = dpt.arange(10) |
173 | | - b = dpt.ones(10) |
174 | | - c = MockArray(b) |
175 | | - r = dpt.hypot(a, c) |
176 | | - assert isinstance(r, dpt.usm_ndarray) |
177 | | - |
178 | | - |
179 | | -def test_hypot_canary_mock_array(): |
180 | | - get_queue_or_skip() |
181 | | - a = dpt.arange(10) |
182 | | - |
183 | | - class Canary: |
184 | | - def __init__(self): |
185 | | - pass |
186 | | - |
187 | | - @property |
188 | | - def __sycl_usm_array_interface__(self): |
189 | | - return None |
190 | | - |
191 | | - c = Canary() |
192 | | - with pytest.raises(ValueError): |
193 | | - dpt.hypot(a, c) |
0 commit comments