|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# A subset of high-level geospatial data science strategies*:\n", |
| 8 | + "## Relevant core concepts and existing tools for analysis, visualization, and interpretation\n", |
| 9 | + "*Not intended for trillions of ATL03 points\n", |
| 10 | + "\n", |
| 11 | + "ICESat-2 hackweek \n", |
| 12 | + "June 18, 2019 \n", |
| 13 | + "David Shean" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "# Updated rough outline after call on 5/28/19" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "markdown", |
| 25 | + "metadata": {}, |
| 26 | + "source": [ |
| 27 | + "# Introduction\n", |
| 28 | + "## Two pathways\n", |
| 29 | + "1. Efficient data processing, scalable workflows\n", |
| 30 | + "2. High-level data science - *analysis, interpetation, and visualization*\n", |
| 31 | + "\n", |
| 32 | + "## ICESat GLAS review?\n", |
| 33 | + "\n", |
| 34 | + "## Core geospatial concepts\n", |
| 35 | + "### Datums and projections\n", |
| 36 | + "An essential, but often overlooked decision\n", |
| 37 | + "\n", |
| 38 | + "#### Datum selection\n", |
| 39 | + "* Background on ECEF, ellipsoid, and geoid heights\n", |
| 40 | + "* Satellites use ECEF, ellipsoid is simple shape model - limited error\n", |
| 41 | + "* Geoid models are coarse and *always* introduce error, but provide elevations \n", |
| 42 | + "* Sea ice, freeboard height - need to use a geoid (talk to your community on best practices)\n", |
| 43 | + "* Careful about incorporating other datesets, geoid to ellipsoid offsets are +/-100 m\n", |
| 44 | + "* In practice - pick one, and use it consistently for relative elevation change\n", |
| 45 | + "\n", |
| 46 | + "#### Projection selection\n", |
| 47 | + "* Do you need to measure distances?\n", |
| 48 | + "* Do you need to calculate areas? Volume change?\n", |
| 49 | + "* In practice - community knows best practices, South Polar Stereographic (EPSG:3031), North Polar Stereographic (EPSG:3413)\n", |
| 50 | + "* Understand the limitations - not equidistant, so velocities will contain error depending on location\n", |
| 51 | + "\n", |
| 52 | + "## Core geospatial data operations\n", |
| 53 | + "### Scatterplots, chloropleth maps, histograms\n", |
| 54 | + "### Spatial selection by arbitrary polygons\n", |
| 55 | + "### Spatial aggregation and statistics\n", |
| 56 | + "\n", |
| 57 | + "## The Python geospatial landscape\n", |
| 58 | + "### Existing tools: geopandas, rasterio, GDAL, cartopy?\n", |
| 59 | + "#### Geohackweek overview in 5 minutes\n", |
| 60 | + "\n", |
| 61 | + "### Saving point cloud data\n", |
| 62 | + "* NumPy csv output\n", |
| 63 | + "* Geopandas/fiona - shp, geopackage, database formats, strategies\n", |
| 64 | + "### Visualizing\n", |
| 65 | + "\n", |
| 66 | + "## Integrating Raster and Point data\n", |
| 67 | + "### Loading raster DEM, basic point sampling, difference maps\n", |
| 68 | + "### Filtering bad shots - simple cloud filter\n", |
| 69 | + "\n" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "markdown", |
| 74 | + "metadata": {}, |
| 75 | + "source": [ |
| 76 | + "## Objectives (pulled from GDA course notebooks, need to be refined and updated to reflect content)\n", |
| 77 | + "\n", |
| 78 | + "* Apply some of the core NumPy, Pandas, and Matplotlib functionality\n", |
| 79 | + "* Learn basic data manipulation and exploration with a relatively small, clean point dataset\n", |
| 80 | + "\n", |
| 81 | + "* Review some fundamental concepts that are common to most geospatial analysis\n", |
| 82 | + "* Explore coordinate systems, projections and transformations, geometry types\n", |
| 83 | + "* Create more sophisticated visualizations involving multiple layers and data types\n", |
| 84 | + "\n", |
| 85 | + "* Continue to explore GeoPandas functionality, including spatial joins\n", |
| 86 | + "* Explore geospatial hexbin plots\n", |
| 87 | + "\n", |
| 88 | + "* Sampling a raster at discrete point locations" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [] |
| 97 | + } |
| 98 | + ], |
| 99 | + "metadata": { |
| 100 | + "kernelspec": { |
| 101 | + "display_name": "Python 3", |
| 102 | + "language": "python", |
| 103 | + "name": "python3" |
| 104 | + }, |
| 105 | + "language_info": { |
| 106 | + "codemirror_mode": { |
| 107 | + "name": "ipython", |
| 108 | + "version": 3 |
| 109 | + }, |
| 110 | + "file_extension": ".py", |
| 111 | + "mimetype": "text/x-python", |
| 112 | + "name": "python", |
| 113 | + "nbconvert_exporter": "python", |
| 114 | + "pygments_lexer": "ipython3", |
| 115 | + "version": "3.6.7" |
| 116 | + } |
| 117 | + }, |
| 118 | + "nbformat": 4, |
| 119 | + "nbformat_minor": 2 |
| 120 | +} |
0 commit comments