-
Notifications
You must be signed in to change notification settings - Fork 424
Open
Labels
enhancementNew feature or requestNew feature or requestmcp-serversMCP Server SamplesMCP Server SamplesoicOpen Innovation Community ContributionsOpen Innovation Community ContributionsrustRust programmingRust programming
Milestone
Description
Overview
Create a sample MCP Server in Rust that provides comprehensive performance benchmarking and profiling capabilities for applications, systems, and network resources.
Server Specifications
Server Details
- Name:
performance-benchmark-server - Language: Rust 1.75+
- Location:
mcp-servers/rust/performance-benchmark-server/ - Purpose: Demonstrate high-performance benchmarking and profiling via MCP
Core Features
- CPU and memory benchmarking
- Network performance testing
- I/O throughput measurement
- Concurrent load testing
- Statistical analysis of results
- Cross-platform performance metrics
Tools Provided
1. cpu_benchmark
CPU performance testing with various workloads
#[derive(Deserialize)]
struct CpuBenchmarkRequest {
test_type: String, // arithmetic, memory_bound, cache_intensive, prime_sieve
duration_secs: u64, // Test duration
thread_count: Option<usize>, // Number of threads (default: CPU cores)
workload_size: Option<usize>, // Problem size for scalable tests
iterations: Option<u64>, // For deterministic tests
}2. memory_benchmark
Memory performance and allocation testing
#[derive(Deserialize)]
struct MemoryBenchmarkRequest {
test_type: String, // sequential_read, random_access, allocation_speed
memory_size: String, // "1MB", "100MB", "1GB"
access_pattern: String, // sequential, random, stride
thread_count: Option<usize>,
iterations: u64,
}3. network_benchmark
Network performance testing
#[derive(Deserialize)]
struct NetworkBenchmarkRequest {
test_type: String, // latency, throughput, concurrent_connections
target_host: String, // Target server
port: u16,
protocol: String, // tcp, udp, http, https
concurrent_connections: usize,
data_size: String, // Per-request data size
duration_secs: u64,
}4. io_benchmark
File system and disk I/O performance testing
#[derive(Deserialize)]
struct IoBenchmarkRequest {
test_type: String, // sequential_write, random_read, mixed_workload
file_path: String, // Test file path
file_size: String, // Total file size for test
block_size: String, // I/O block size (4KB, 64KB, 1MB)
sync_mode: String, // sync, async, direct
thread_count: Option<usize>,
}5. load_test
Comprehensive load testing with configurable scenarios
#[derive(Deserialize)]
struct LoadTestRequest {
target_url: String,
request_method: String, // GET, POST, PUT, DELETE
headers: HashMap<String, String>,
body: Option<String>,
concurrent_users: usize,
requests_per_second: Option<f64>,
duration_secs: u64,
ramp_up_secs: Option<u64>,
}6. profile_application
Application profiling and performance analysis
#[derive(Deserialize)]
struct ProfileRequest {
command: String, // Command to profile
args: Vec<String>, // Command arguments
profile_type: String, // cpu, memory, io, all
duration_secs: Option<u64>,
sampling_freq: Option<u32>, // Sampling frequency in Hz
output_format: String, // json, flamegraph, callgrind
}7. system_stress
System stress testing and stability analysis
#[derive(Deserialize)]
struct StressTestRequest {
stress_type: String, // cpu, memory, io, network, all
intensity: f64, // Stress intensity (0.0-1.0)
duration_secs: u64,
monitor_metrics: bool,
target_resources: Option<Vec<String>>,
}8. compare_results
Statistical comparison of benchmark results
#[derive(Deserialize)]
struct CompareRequest {
baseline_results: String, // JSON results from previous benchmark
current_results: String, // JSON results to compare against
metrics: Vec<String>, // Metrics to compare
significance_level: f64, // Statistical significance threshold
}Implementation Requirements
Directory Structure
mcp-servers/rust/performance-benchmark-server/
├── src/
│ ├── main.rs
│ ├── lib.rs
│ ├── benchmarks/
│ │ ├── mod.rs
│ │ ├── cpu.rs
│ │ ├── memory.rs
│ │ ├── network.rs
│ │ ├── io.rs
│ │ └── load_test.rs
│ ├── profiling/
│ │ ├── mod.rs
│ │ ├── cpu_profiler.rs
│ │ ├── memory_profiler.rs
│ │ └── flamegraph.rs
│ ├── metrics/
│ │ ├── mod.rs
│ │ ├── collector.rs
│ │ └── statistics.rs
│ ├── utils/
│ │ ├── mod.rs
│ │ ├── system_info.rs
│ │ └── results.rs
│ └── config.rs
├── Cargo.toml
├── README.md
├── tests/
├── benchmarks/ # Built-in benchmark suite
│ ├── cpu_tests.rs
│ ├── memory_tests.rs
│ └── integration.rs
└── examples/
├── basic_benchmarks.rs
├── load_testing.rs
└── profiling_example.rs
Dependencies
# Cargo.toml
[package]
name = "performance-benchmark-server"
version = "0.1.0"
edition = "2021"
[dependencies]
mcp = { path = "../mcp-rust" }
tokio = { version = "1.35", features = ["full"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
# Performance and benchmarking
criterion = "0.5"
sysinfo = "0.30"
heim = "0.1"
perf-event = "0.4"
# Networking
reqwest = { version = "0.11", features = ["json"] }
tokio-tungstenite = "0.20"
# I/O and file system
tempfile = "3.8"
memmap2 = "0.9"
# Statistics and analysis
statistical = "1.0"
plotters = "0.3"
# System interaction
nix = "0.27"
libc = "0.2"
# Utilities
rayon = "1.8"
crossbeam = "0.8"
dashmap = "5.5"
uuid = "1.6"
chrono = { version = "0.4", features = ["serde"] }
[dev-dependencies]
proptest = "1.4"Configuration
# config.toml
[benchmark]
default_duration = 10 # seconds
max_duration = 300 # seconds
max_threads = 32
max_memory_size = "8GB"
temp_dir = "./benchmark_temp"
[network]
timeout = 30 # seconds
max_concurrent = 1000
allowed_hosts = ["localhost", "127.0.0.1", "::1"]
default_port_range = [8000, 9000]
[profiling]
sampling_frequency = 1000 # Hz
max_profile_duration = 300 # seconds
output_directory = "./profiles"
enable_flamegraphs = true
[system]
monitor_interval = 100 # milliseconds
enable_hardware_counters = true
collect_system_metrics = trueUsage Examples
CPU Benchmarking
# CPU arithmetic benchmark
echo '{
"method": "tools/call",
"params": {
"name": "cpu_benchmark",
"arguments": {
"test_type": "arithmetic",
"duration_secs": 30,
"thread_count": 8
}
}
}' | performance-benchmark-serverMemory Performance Testing
# Memory allocation benchmark
echo '{
"method": "tools/call",
"params": {
"name": "memory_benchmark",
"arguments": {
"test_type": "allocation_speed",
"memory_size": "100MB",
"access_pattern": "sequential",
"iterations": 1000
}
}
}' | performance-benchmark-serverNetwork Load Testing
# HTTP load test
echo '{
"method": "tools/call",
"params": {
"name": "load_test",
"arguments": {
"target_url": "http://localhost:8080/api/test",
"request_method": "GET",
"concurrent_users": 100,
"requests_per_second": 500,
"duration_secs": 60,
"ramp_up_secs": 10
}
}
}' | performance-benchmark-serverApplication Profiling
# Profile a Rust application
echo '{
"method": "tools/call",
"params": {
"name": "profile_application",
"arguments": {
"command": "./target/release/my_app",
"args": ["--mode", "production"],
"profile_type": "cpu",
"duration_secs": 60,
"output_format": "flamegraph"
}
}
}' | performance-benchmark-serverAdvanced Features
- Hardware Counters: CPU performance counters (cache misses, branch predictions)
- NUMA Awareness: Multi-socket system optimization
- Container Metrics: Docker and Kubernetes performance analysis
- Continuous Monitoring: Long-term performance tracking
- Regression Detection: Automatic performance regression detection
- Custom Workloads: User-defined benchmark scenarios
Statistical Analysis
- Percentile Analysis: P50, P95, P99 latency measurements
- Confidence Intervals: Statistical significance testing
- Outlier Detection: Anomaly identification in results
- Trend Analysis: Performance trend visualization
- Correlation Analysis: Multi-metric relationship analysis
Performance Optimizations
- Zero-Copy Operations: Minimize memory allocations
- SIMD Instructions: Vectorized benchmark operations
- Lock-Free Data Structures: High-concurrency measurements
- Memory Pool: Efficient memory management
- Async I/O: Non-blocking performance testing
Results Format
#[derive(Serialize)]
struct BenchmarkResult {
test_name: String,
timestamp: DateTime<Utc>,
system_info: SystemInfo,
configuration: TestConfiguration,
metrics: BenchmarkMetrics,
statistics: StatisticalSummary,
raw_data: Option<Vec<Measurement>>,
}
#[derive(Serialize)]
struct BenchmarkMetrics {
throughput: Option<f64>, // ops/sec or MB/sec
latency: Option<LatencyStats>,
cpu_usage: Option<f64>, // percentage
memory_usage: Option<u64>, // bytes
error_rate: Option<f64>, // percentage
}Testing Requirements
- Unit tests for all benchmark algorithms
- Integration tests with real workloads
- Performance regression tests
- Cross-platform compatibility testing
- Stress testing of the benchmarking system itself
- Accuracy verification against known baselines
Acceptance Criteria
- Rust MCP server with 8+ performance testing tools
- CPU, memory, network, and I/O benchmarking capabilities
- Application profiling with flamegraph generation
- Load testing with concurrent user simulation
- Statistical analysis and comparison features
- System stress testing and monitoring
- Cross-platform support (Linux, macOS, Windows)
- Comprehensive test suite with performance validation (>90% coverage)
- Optimized implementation with minimal overhead
- Complete documentation with benchmarking best practices
Priority
Medium - Demonstrates performance-critical applications and Rust's zero-cost abstractions
Use Cases
- Application performance optimization
- System capacity planning
- Performance regression detection
- Load testing and scalability analysis
- Hardware benchmarking and comparison
- Development environment performance validation
- CI/CD performance testing integration
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or requestmcp-serversMCP Server SamplesMCP Server SamplesoicOpen Innovation Community ContributionsOpen Innovation Community ContributionsrustRust programmingRust programming