@@ -2,7 +2,9 @@ istraining() = false
22
33ChainRulesCore. rrule (:: typeof (istraining)) = true , _ -> (NoTangent (),)
44
5- _isactive (m) = isnothing (m. active) ? istraining () : m. active
5+ _isactive (m) = isnothing (m. active) ? istraining () : Bool (m. active)
6+
7+ ChainRulesCore. @non_differentiable _isactive (:: Any )
68
79_dropout_shape (s, :: Colon ) = size (s)
810_dropout_shape (s, dims) = tuple ((i ∉ dims ? 1 : si for (i, si) ∈ enumerate (size (s))). .. )
@@ -29,26 +31,51 @@ automatically managed using the [`Dropout`](@ref) layer instead of the
2931
3032The [`Dropout`](@ref) layer is what you should use in most scenarios.
3133"""
32- function dropout (rng, x, p; dims= :, active:: Bool = true )
33- active || return x
34- y = dropout_mask (rng, x, p, dims= dims)
35- return x .* y
36- end
34+ dropout (rng, x, p; dims= :, active:: Bool = true ) = _dropout (rng, x, p, dims, active)
3735dropout (x, p; kwargs... ) = dropout (rng_from_array (x), x, p; kwargs... )
3836
39- dropout_mask (rng:: CUDA.RNG , x:: CuArray , p; kwargs... ) = _dropout_mask (rng, x, p; kwargs... )
40- dropout_mask (rng, x:: CuArray , p; kwargs... ) =
41- throw (ArgumentError (" x isa CuArray, but rng isa $(typeof (rng)) . dropout_mask only support CUDA.RNG for CuArrays." ))
42- dropout_mask (rng, x, p; kwargs... ) = _dropout_mask (rng, x, p; kwargs... )
43- function _dropout_mask (rng, x, p; dims= :)
37+ # Internal function without kwargs to keep Zygote generated code type stable
38+ function _dropout (rng, x, p, dims, active)
39+ mask = active ? dropout_mask (rng, x, p, dims) : nothing
40+ return _apply_mask (x, mask)
41+ end
42+
43+ function ChainRulesCore. rrule (:: typeof (_dropout), rng, x, p, dims, active)
44+ mask = active ? dropout_mask (rng, x, p, dims) : nothing
45+ # Required because we don't always call dropout_mask
46+ MT = Core. Compiler. return_type (dropout_mask, Tuple{typeof (rng),typeof (x),typeof (p),typeof (dims)})
47+ project_x = ProjectTo (x)
48+ return _apply_mask (x, mask), DropoutPullback {MT,typeof(project_x)} (mask, project_x)
49+ end
50+
51+ # Also needed for type stability. Otherwise inference lifts the Union into a
52+ # Union{pullback{Nothing}, pullback{AbstractArray}}
53+ struct DropoutPullback{M<: AbstractArray ,P<: ProjectTo{AbstractArray} }
54+ mask:: Union{Nothing,M}
55+ project:: P
56+ end
57+
58+ function (pb:: DropoutPullback )(dy)
59+ dx = pb. project (_apply_mask (dy, pb. mask))
60+ return (NoTangent (), NoTangent (), dx, NoTangent ())
61+ end
62+
63+ _apply_mask (x, :: Nothing ) = x
64+ _apply_mask (x, mask) = x .* mask
65+
66+ dropout_mask (rng:: CUDA.RNG , x:: CuArray , p, dims) = _dropout_mask (rng, x, p, dims)
67+ dropout_mask (rng, x:: CuArray , p, dims) =
68+ throw (ArgumentError (" x isa CuArray, but rng isa $(typeof (rng)) . dropout_mask only supports CUDA.RNG for CuArrays." ))
69+ dropout_mask (rng, x, p, dims) = _dropout_mask (rng, x, p, dims)
70+ function _dropout_mask (rng, x, p, dims)
4471 realfptype = float (real (eltype (x)))
4572 y = rand! (rng, similar (x, realfptype, _dropout_shape (x, dims)))
4673 y .= _dropout_kernel .(y, p, 1 - p)
4774 return y
4875end
4976
5077# TODO move this to NNlib
51- ChainRulesCore. @non_differentiable dropout_mask (:: Any , :: Any , :: Any )
78+ ChainRulesCore. @non_differentiable dropout_mask (:: Any , :: Any , :: Any , :: Any )
5279
5380"""
5481 Dropout(p; dims=:, rng = rng_from_array())
106133@functor Dropout
107134trainable (a:: Dropout ) = (;)
108135
109- function (a:: Dropout )(x)
110- _isactive (a) || return x
111- return dropout (a. rng, x, a. p; dims= a. dims, active= true )
112- end
136+ (a:: Dropout )(x) = _dropout (a. rng, x, a. p, a. dims, _isactive (a))
113137
114138testmode! (m:: Dropout , mode= true ) =
115139 (m. active = (isnothing (mode) || mode == :auto ) ? nothing : ! mode; m)
@@ -226,7 +250,7 @@ LayerNorm(size_act...; kw...) = LayerNorm(Int.(size_act[1:end-1]), size_act[end]
226250
227251@functor LayerNorm
228252
229- (a:: LayerNorm )(x) = a. diag (normalise (x, dims = 1 : length (a. size), ϵ = a. ϵ))
253+ (a:: LayerNorm )(x) = a. diag (_normalize (x, 1 : length (a. size), a. ϵ))
230254
231255function Base. show (io:: IO , l:: LayerNorm )
232256 print (io, " LayerNorm(" , join (l. size, " , " ))
0 commit comments