|
| 1 | +# 242. Valid Anagrams |
| 2 | + |
| 3 | +**Difficulty:** Easy |
| 4 | +**Category:** Strings, Hashing, Sorting |
| 5 | +**Leetcode Link:** [Problem Link](https://leetcode.com/problems/valid-anagram/) |
| 6 | + |
| 7 | +--- |
| 8 | + |
| 9 | +## 📝 Introduction |
| 10 | + |
| 11 | +Given two strings, determine whether they are anagrams of each other. |
| 12 | +Two strings are anagrams if they contain the same characters with the same frequencies, regardless of the order. |
| 13 | + |
| 14 | +### Constraints: |
| 15 | +- Only uppercase letters (e.g., 'A' to 'Z') are considered. |
| 16 | +- Strings must be the same length to qualify as anagrams. |
| 17 | +- Output `true` if they are anagrams, otherwise `false`. |
| 18 | + |
| 19 | +--- |
| 20 | + |
| 21 | +## 💡 Approach & Key Insights |
| 22 | + |
| 23 | +- The core idea is to check whether the two strings contain the exact same characters with the same counts. |
| 24 | +- If their lengths differ, they can't be anagrams. |
| 25 | +- There are multiple valid ways to compare character distributions: |
| 26 | + - Sort and compare |
| 27 | + - Count frequencies using a fixed-size array (best for character sets of known size) |
| 28 | + |
| 29 | +--- |
| 30 | + |
| 31 | +## 🛠️ Breakdown of Approaches |
| 32 | + |
| 33 | +### 1️⃣ Brute Force / Naive Approach — Sorting |
| 34 | + |
| 35 | +- **Explanation:** |
| 36 | + Sort both strings and check if they are equal. If sorted versions are identical, then the strings are anagrams. |
| 37 | + |
| 38 | +- **Time Complexity:** O(N log N) – Due to sorting of both strings. |
| 39 | +- **Space Complexity:** O(1) – Assuming in-place sorting. |
| 40 | + |
| 41 | +- **Example/Dry Run:** |
| 42 | + |
| 43 | +```plaintext |
| 44 | +Input: str1 = "INTEGER", str2 = "TEGERNI" |
| 45 | +Step 1: Sort str1 → "EEGINRT" |
| 46 | +Step 2: Sort str2 → "EEGINRT" |
| 47 | +Step 3: Compare both → Equal → return true |
| 48 | +
|
| 49 | +Output: true |
| 50 | +``` |
| 51 | + |
| 52 | +--- |
| 53 | + |
| 54 | +### 2️⃣ Optimized Approach — Frequency Count |
| 55 | + |
| 56 | +- **Explanation:** |
| 57 | + Use a frequency array of size 26 (for uppercase letters). |
| 58 | + - Increment count for characters in str1 |
| 59 | + - Decrement for characters in str2 |
| 60 | + - If all frequencies are 0 in the end → anagrams |
| 61 | + |
| 62 | +- **Time Complexity:** O(N) – One pass for each string. |
| 63 | +- **Space Complexity:** O(1) – Fixed array size of 26. |
| 64 | + |
| 65 | +- **Example/Dry Run:** |
| 66 | + |
| 67 | +```plaintext |
| 68 | +Input: str1 = "INTEGER", str2 = "TEGERNI" |
| 69 | +Step 1: freq[] = [0,...,0] |
| 70 | +
|
| 71 | +Step 2: For str1 → |
| 72 | +I+1, N+1, T+1, E+1, G+1, E+1, R+1 |
| 73 | +→ freq = {G:1, E:2, I:1, N:1, R:1, T:1} |
| 74 | +
|
| 75 | +Step 3: For str2 → |
| 76 | +T-1, E-1, G-1, E-1, R-1, N-1, I-1 |
| 77 | +→ freq = all zero |
| 78 | +
|
| 79 | +Step 4: All frequencies are zero → return true |
| 80 | +
|
| 81 | +Output: true |
| 82 | +``` |
| 83 | + |
| 84 | +--- |
| 85 | + |
| 86 | +### 3️⃣ Best / Final Optimized Approach |
| 87 | + |
| 88 | +- **Explanation:** |
| 89 | + Frequency counting is optimal for limited character sets (like uppercase/lowercase letters). |
| 90 | + - No sorting |
| 91 | + - No additional data structures like maps or sets |
| 92 | + - Linear time and constant space |
| 93 | + |
| 94 | +- **Time Complexity:** O(N) |
| 95 | +- **Space Complexity:** O(1) |
| 96 | + |
| 97 | +--- |
| 98 | + |
| 99 | +## 📊 Complexity Analysis |
| 100 | + |
| 101 | +| Approach | Time Complexity | Space Complexity | |
| 102 | +| ------------- | --------------- | ---------------- | |
| 103 | +| Brute Force | O(N log N) | O(1) | |
| 104 | +| Optimized | O(N) | O(1) | |
| 105 | +| Best Approach | O(N) | O(1) | |
| 106 | + |
| 107 | +--- |
| 108 | + |
| 109 | +## 📉 Optimization Ideas |
| 110 | + |
| 111 | +- Convert both strings to the same case (e.g., uppercase) to make comparison case-insensitive if needed. |
| 112 | +- If dealing with Unicode characters, use a `HashMap` instead of fixed-size array. |
| 113 | +- Early termination: While building the frequency array, if any count goes negative, return `false` early. |
| 114 | + |
| 115 | +--- |
| 116 | + |
| 117 | +## 📌 Example Walkthroughs & Dry Runs |
| 118 | + |
| 119 | +```plaintext |
| 120 | +Example 1: |
| 121 | +Input: str1 = "CAT", str2 = "ACT" |
| 122 | +
|
| 123 | +Step 1: freq[26] = {0} |
| 124 | +Step 2: +1 for C, A, T → freq[C]=1, A=1, T=1 |
| 125 | +Step 3: -1 for A, C, T → all become 0 |
| 126 | +Output: true |
| 127 | +
|
| 128 | +Example 2: |
| 129 | +Input: str1 = "RULES", str2 = "LESRT" |
| 130 | +
|
| 131 | +Step 1: freq[26] = {0} |
| 132 | +Step 2: +1 for R, U, L, E, S → freq[R]=1, U=1, L=1, E=1, S=1 |
| 133 | +Step 3: -1 for L, E, S, R, T → freq[T]=-1 (unexpected char) |
| 134 | +Output: false |
| 135 | +``` |
| 136 | + |
| 137 | +--- |
| 138 | + |
| 139 | +## 🔗 Additional Resources |
| 140 | + |
| 141 | +- [GeeksforGeeks – Anagram Check](https://www.geeksforgeeks.org/check-whether-two-strings-are-anagram-of-each-other/) |
| 142 | + |
| 143 | +--- |
| 144 | + |
| 145 | +Author: Abdul Wahab |
| 146 | +Date: 19/07/2025 |
0 commit comments