@@ -833,10 +833,6 @@ begin
833833 }
834834end ;
835835
836- opaque symbol ltn_neqAle m n : π (istrue (m < n ) ⇔ istrue (m ≤ n ) ∧ (m ≠ n )) ≔
837- begin
838- abort ;
839-
840836opaque symbol leq_add0 m n :
841837 π (istrue (_0 ≤ m )) → π (istrue (_0 ≤ n )) → π (istrue (_0 ≤ m + n )) ≔
842838begin
@@ -1195,16 +1191,6 @@ begin
11951191 assume m n ; rewrite maxnC m n ; apply leq_maxl n m ;
11961192end ;
11971193
1198- opaque symbol gtn_max m n1 n2 :
1199- π (istrue (m > max n1 n2 ) ⇔ istrue (m > n1 ) ∧ istrue (m > n2 )) ≔
1200- begin
1201- abort ;
1202-
1203- opaque symbol geq_max m n1 n2 :
1204- π (istrue (m ≥ max n1 n2 ) ⇔ istrue (m ≥ n1 ) ∧ istrue (m ≥ n2 )) ≔
1205- begin
1206- abort ;
1207-
12081194opaque symbol ltn_predK m n : π (istrue (m < n )) → π (n ∸1 +1 = n ) ≔
12091195begin
12101196 assume m ; induction
@@ -1465,10 +1451,6 @@ begin
14651451 }
14661452end ;
14671453
1468- opaque symbol minnE m n : π (min m n = m - (m - n )) ≔
1469- begin
1470- abort ;
1471-
14721454opaque symbol minnn x : π (min x x = x ) ≔
14731455begin
14741456 induction
@@ -1747,15 +1729,6 @@ begin
17471729 reflexivity ;
17481730end ;
17491731
1750- opaque symbol expn_gt0 m n :
1751- π ((istrue (_0 < m ^ n )) ⇔ istrue (_0 < m ) ∨ (n = _0 )) ≔
1752- begin
1753- abort ;
1754-
1755- opaque symbol ltn_expl m n : π (istrue ((_0 +1 ) < m )) → π (istrue (n < m ^ n )) ≔
1756- begin
1757- abort ;
1758-
17591732// factorial
17601733
17611734symbol ! : ℕ → ℕ; notation ! postfix 40 ;
@@ -1811,8 +1784,6 @@ symbol _10 ≔ _9 +1;
18111784builtin "nat_zero" ≔ _0 ;
18121785builtin "nat_succ" ≔ +1 ;
18131786
1814- compute _2 + _2 ;
1815-
18161787// enable parsing of natural numbers in decimal notation
18171788
18181789builtin "0" ≔ _0 ;
@@ -1829,5 +1800,3 @@ builtin "10" ≔ _10;
18291800
18301801builtin "+" ≔ +;
18311802builtin "*" ≔ *;
1832-
1833- type 42 ;
0 commit comments