Skip to content

Commit cf9e5dc

Browse files
committed
Update README
1 parent cbb8cbb commit cf9e5dc

File tree

2 files changed

+90
-2
lines changed

2 files changed

+90
-2
lines changed

README.Rmd

Lines changed: 34 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,4 +3,37 @@ output: github_document
33
---
44

55
<!-- README.md is generated from README.Rmd. Please edit that file -->
6-
# An Introductory Tutorial to Cohort State-Transition Models in R
6+
<!-- [![DOI](https://zenodo.org/badge/331070175.svg)](https://zenodo.org/badge/latestdoi/331070175) -->
7+
8+
# An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example
9+
10+
This GitHub repository provides the code of the tutorial on how to implement time-dependent cohort state-transition models (cSTMs) in R using a cost-effectiveness analysis (CEA) example, explained in the following manuscript:
11+
12+
- Alarid-Escudero F, Krijkamp EM, Enns EA, Yang A, Hunink MGM, Pechlivanoglou P, Jalal H. [An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example](http://arxiv.org/abs/2001.07824). arXiv:200107824v3. 2021:1-26.
13+
14+
The [`R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/tree/main/R) folder includes two different scripts corresponding to functions used to synthesize cSTMs outputs and conduct several sensitivity analyses:
15+
- [`Funtions.R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/blob/main/R/Functions.R): Functions to generate epidemiological measures from time-dependent cSTMs.
16+
- [`Functions_cSTM_time_indep.R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/blob/main/R/Functions_cSTM_time_indep.R): These functions wrap the time-dependent cSTM, compute CEA measures, and generate probabilistic sensitivity analysis (PSA) input datasets.
17+
18+
19+
We recommend familiarizing with the [DARTH](http://darthworkgroup.com) coding framework described in
20+
21+
- Alarid-Escudero F, Krijkamp EM, Pechlivanoglou P, Jalal HJ, Kao SYZ, Yang A, Enns EA. [A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling](https://link.springer.com/article/10.1007/s40273-019-00837-x). [PharmacoEconomics](https://www.springer.com/journal/40273), 2190;37(11):1329–1339. https://doi.org/10.1007/s40273-019-00837-x
22+
23+
To run the CEA, you require [`dampack`: Decision-Analytic Modeling Package](https://cran.r-project.org/web/packages/dampack/index.html), an R package for analyzing and visualizing the health economic outputs of decision models.
24+
25+
## Full list of Contributors:
26+
27+
* [Fernando Alarid-Escudero](https://github.com/feralaes)
28+
29+
* [Eline Krijkamp](https://github.com/krijkamp)
30+
31+
* [Eva Enns](https://github.com/evaenns)
32+
33+
* [Alan Yang](https://github.com/alanyang0924)
34+
35+
* [Myriam Hunink](http://www.erasmus-epidemiology.nl/people/profile.php?id=45)
36+
37+
* [Petros Pechlivanoglou](https://github.com/ppehli)
38+
39+
* [Hawre Jalal](https://github.com/hjalal)

README.md

Lines changed: 56 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,59 @@
11

22
<!-- README.md is generated from README.Rmd. Please edit that file -->
3+
<!-- [![DOI](https://zenodo.org/badge/331070175.svg)](https://zenodo.org/badge/latestdoi/331070175) -->
34

4-
# An Introductory Tutorial to Cohort State-Transition Models in R
5+
# An Introductory Tutorial on Cohort State-Transition Models in R Using a Cost-Effectiveness Analysis Example
6+
7+
This GitHub repository provides the code of the tutorial on how to
8+
implement time-dependent cohort state-transition models (cSTMs) in R
9+
using a cost-effectiveness analysis (CEA) example, explained in the
10+
following manuscript:
11+
12+
- Alarid-Escudero F, Krijkamp EM, Enns EA, Yang A, Hunink MGM,
13+
Pechlivanoglou P, Jalal H. [An Introductory Tutorial on Cohort
14+
State-Transition Models in R Using a Cost-Effectiveness Analysis
15+
Example](http://arxiv.org/abs/2001.07824). arXiv:200107824v3.
16+
2021:1-26.
17+
18+
The
19+
[`R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/tree/main/R)
20+
folder includes two different scripts corresponding to functions used to
21+
synthesize cSTMs outputs and conduct several sensitivity analyses: -
22+
[`Funtions.R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/blob/main/R/Functions.R):
23+
Functions to generate epidemiological measures from time-dependent
24+
cSTMs. -
25+
[`Functions_cSTM_time_indep.R`](https://github.com/DARTH-git/cohort-modeling-tutorial-intro/blob/main/R/Functions_cSTM_time_indep.R):
26+
These functions wrap the time-dependent cSTM, compute CEA measures, and
27+
generate probabilistic sensitivity analysis (PSA) input datasets.
28+
29+
We recommend familiarizing with the [DARTH](http://darthworkgroup.com)
30+
coding framework described in
31+
32+
- Alarid-Escudero F, Krijkamp EM, Pechlivanoglou P, Jalal HJ, Kao SYZ,
33+
Yang A, Enns EA. [A Need for Change! A Coding Framework for
34+
Improving Transparency in Decision
35+
Modeling](https://link.springer.com/article/10.1007/s40273-019-00837-x).
36+
[PharmacoEconomics](https://www.springer.com/journal/40273),
37+
2190;37(11):1329–1339. <https://doi.org/10.1007/s40273-019-00837-x>
38+
39+
To run the CEA, you require [`dampack`: Decision-Analytic Modeling
40+
Package](https://cran.r-project.org/web/packages/dampack/index.html), an
41+
R package for analyzing and visualizing the health economic outputs of
42+
decision models.
43+
44+
## Full list of Contributors:
45+
46+
- [Fernando Alarid-Escudero](https://github.com/feralaes)
47+
48+
- [Eline Krijkamp](https://github.com/krijkamp)
49+
50+
- [Eva Enns](https://github.com/evaenns)
51+
52+
- [Alan Yang](https://github.com/alanyang0924)
53+
54+
- [Myriam
55+
Hunink](http://www.erasmus-epidemiology.nl/people/profile.php?id=45)
56+
57+
- [Petros Pechlivanoglou](https://github.com/ppehli)
58+
59+
- [Hawre Jalal](https://github.com/hjalal)

0 commit comments

Comments
 (0)