@@ -461,7 +461,7 @@ def __init__(self,
461461 self .instantiate_cond_stage (cond_stage_config )
462462 self .cond_stage_forward = cond_stage_forward
463463 self .clip_denoised = False
464- self .bbox_tokenizer = None # # TODO: special class?
464+ self .bbox_tokenizer = None
465465
466466 self .restarted_from_ckpt = False
467467 if ckpt_path is not None :
@@ -598,7 +598,7 @@ def get_weighting(self, h, w, Ly, Lx, device):
598598 weighting = weighting * L_weighting
599599 return weighting
600600
601- def get_fold_unfold (self , x , kernel_size , stride , uf = 1 , df = 1 ): # todo load once not every time, shorten code !
601+ def get_fold_unfold (self , x , kernel_size , stride , uf = 1 , df = 1 ): # todo load once not every time, shorten code
602602 """
603603 :param x: img of size (bs, c, h, w)
604604 :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
@@ -793,7 +793,7 @@ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_qua
793793 z = z .view ((z .shape [0 ], - 1 , ks [0 ], ks [1 ], z .shape [- 1 ])) # (bn, nc, ks[0], ks[1], L )
794794
795795 # 2. apply model loop over last dim
796- if isinstance (self .first_stage_model , VQModelInterface ): # todo ask what this is
796+ if isinstance (self .first_stage_model , VQModelInterface ):
797797 output_list = [self .first_stage_model .decode (z [:, :, :, :, i ],
798798 force_not_quantize = predict_cids or force_not_quantize )
799799 for i in range (z .shape [- 1 ])]
@@ -901,7 +901,7 @@ def apply_model(self, x_noisy, t, cond, return_ids=False):
901901
902902 if hasattr (self , "split_input_params" ):
903903 assert len (cond ) == 1 # todo can only deal with one conditioning atm
904- assert not return_ids # todo dont know what this is -> I exclude --> Good
904+ assert not return_ids
905905 ks = self .split_input_params ["ks" ] # eg. (128, 128)
906906 stride = self .split_input_params ["stride" ] # eg. (64, 64)
907907
0 commit comments