|
| 1 | +--- |
| 2 | +Title: '.igamma()' |
| 3 | +Description: 'Computes the lower incomplete gamma function for tensor inputs.' |
| 4 | +Subjects: |
| 5 | + - 'Computer Science' |
| 6 | + - 'Data Science' |
| 7 | + - 'Machine Learning' |
| 8 | +Tags: |
| 9 | + - 'AI' |
| 10 | + - 'Deep Learning' |
| 11 | + - 'Methods' |
| 12 | + - 'PyTorch' |
| 13 | + - 'Tensor' |
| 14 | +CatalogContent: |
| 15 | + - 'intro-to-py-torch-and-neural-networks' |
| 16 | + - 'paths/data-science' |
| 17 | +--- |
| 18 | + |
| 19 | +The **`torch.igamma()`** function in PyTorch computes the lower regularized incomplete gamma function, a special mathematical function often used in probability, statistics, and machine learning. `torch.igamma()` is an alias for `torch.special.gammainc()`. This means both functions compute the regularized lower incomplete gamma function and can be used interchangeably. |
| 20 | + |
| 21 | +## Syntax |
| 22 | + |
| 23 | +```pseudo |
| 24 | +torch.igamma(input, other, *, out=None) |
| 25 | +``` |
| 26 | + |
| 27 | +Or, alternatively: |
| 28 | + |
| 29 | +```pseudo |
| 30 | +torch.special.gammainc(input, other, *, out=None) |
| 31 | +``` |
| 32 | + |
| 33 | +**Parameters:** |
| 34 | + |
| 35 | +- `input` (Tensor): The shape parameter `a` of the Gamma function. |
| 36 | +- `other` (Tensor): The upper limit `x` of the integral. |
| 37 | +- `out` (Tensor, optional): The output tensor to store results. |
| 38 | + |
| 39 | +**Return value:** |
| 40 | + |
| 41 | +Returns a tensor containing the lower regularized incomplete gamma function values for each corresponding pair of elements in `input` and `other`. |
| 42 | + |
| 43 | +## Example 1: Basic Element-Wise Computation |
| 44 | + |
| 45 | +In this example, `torch.igamma()` computes the lower regularized incomplete gamma function for corresponding elements of two 1D tensors: |
| 46 | + |
| 47 | +```py |
| 48 | +import torch |
| 49 | + |
| 50 | +a = torch.tensor([2.0, 3.0, 4.0]) |
| 51 | +x = torch.tensor([1.0, 2.0, 3.0]) |
| 52 | + |
| 53 | +result = torch.igamma(a, x) |
| 54 | +print(result) |
| 55 | +``` |
| 56 | + |
| 57 | +This example produces the following output: |
| 58 | + |
| 59 | +```shell |
| 60 | +tensor([0.2642, 0.3233, 0.3528]) |
| 61 | +``` |
| 62 | + |
| 63 | +## Example 2: Gamma Distribution CDF |
| 64 | + |
| 65 | +In this example, `torch.igamma()` calculates the cumulative distribution function (CDF) of a Gamma distribution with shape ${a\}$ and rate 1: |
| 66 | + |
| 67 | +```py |
| 68 | +import torch |
| 69 | + |
| 70 | +a = torch.tensor([2.0]) |
| 71 | +x = torch.linspace(0, 5, 6) |
| 72 | +gamma_cdf = torch.igamma(a, x) |
| 73 | + |
| 74 | +print(gamma_cdf) |
| 75 | +``` |
| 76 | + |
| 77 | +The output of this code is: |
| 78 | + |
| 79 | +```shell |
| 80 | +tensor([0.0000, 0.2642, 0.5940, 0.8009, 0.9084, 0.9596]) |
| 81 | +``` |
| 82 | + |
| 83 | +The `.igamma()` function is useful for: |
| 84 | + |
| 85 | +- Computing CDFs of Gamma, Chi-square, or Exponential distributions. |
| 86 | +- Performing Bayesian statistical modeling (priors and posteriors). |
| 87 | +- Implementing neural network activations and loss functions involving special functions. |
0 commit comments