|
| 1 | +--- |
| 2 | +Title: 'ndim' |
| 3 | +Description: 'Returns the number of dimensions (axes) of a NumPy array.' |
| 4 | +Subjects: |
| 5 | + - 'Code Foundations' |
| 6 | + - 'Computer Science' |
| 7 | +Tags: |
| 8 | + - 'Arrays' |
| 9 | + - 'Attributes' |
| 10 | + - 'NumPy' |
| 11 | + - 'Shape' |
| 12 | +CatalogContent: |
| 13 | + - 'learn-python-3' |
| 14 | + - 'paths/computer-science' |
| 15 | +--- |
| 16 | + |
| 17 | +The **`ndim`** attribute returns the total number of dimensions (axes) of a NumPy array. A 1D array acts like a list, a 2D array forms a matrix, and higher dimensions represent tensors which are common in data science and machine learning. |
| 18 | + |
| 19 | +## Syntax |
| 20 | + |
| 21 | +```pseudo |
| 22 | +ndarray.ndim |
| 23 | +``` |
| 24 | + |
| 25 | +**Parameters:** |
| 26 | + |
| 27 | +The `ndim` attribute takes no parameters. |
| 28 | + |
| 29 | +**Return value:** |
| 30 | + |
| 31 | +Returns an integer representing the number of array dimensions (axes). |
| 32 | + |
| 33 | +## Example: Checking Dimensions of Different Arrays |
| 34 | + |
| 35 | +This example demonstrates how `ndim` behaves for 0D (scalar), 1D (list), and 2D (matrix) arrays: |
| 36 | + |
| 37 | +```py |
| 38 | +import numpy as np |
| 39 | + |
| 40 | +# 0D array (scalar) |
| 41 | +arr_0d = np.array(50) |
| 42 | +print("0D array:", arr_0d, "| Dimensions:", arr_0d.ndim) |
| 43 | + |
| 44 | +# 1D array (list) |
| 45 | +arr_1d = np.array([1, 2, 3, 4, 5]) |
| 46 | +print("1D array:", arr_1d, "| Dimensions:", arr_1d.ndim) |
| 47 | + |
| 48 | +# 2D array (matrix) |
| 49 | +arr_2d = np.array([[1, 2, 3], [4, 5, 6]]) |
| 50 | +print("2D array:\n", arr_2d, "\nDimensions:", arr_2d.ndim) |
| 51 | +``` |
| 52 | + |
| 53 | +The output of this code is: |
| 54 | + |
| 55 | +```shell |
| 56 | +0D array: 50 | Dimensions: 0 |
| 57 | +1D array: [1 2 3 4 5] | Dimensions: 1 |
| 58 | +2D array: |
| 59 | + [[1 2 3] |
| 60 | + [4 5 6]] |
| 61 | +Dimensions: 2 |
| 62 | +``` |
| 63 | + |
| 64 | +## Codebyte Example: Using `ndim` in a NumPy Operation |
| 65 | + |
| 66 | +In this example, `ndim` is used to identify the number of dimensions in different types of image data like grayscale (2D) and color (3D): |
| 67 | + |
| 68 | +```codebyte/python |
| 69 | +import numpy as np |
| 70 | +
|
| 71 | +arr_a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) |
| 72 | +
|
| 73 | +# Print the array and its number of dimensions |
| 74 | +print(f"array: {arr_a}, number of dimensions: {arr_a.ndim}") |
| 75 | +``` |
0 commit comments