Skip to content

Commit 33a641d

Browse files
authored
[Term Entry] Python NumPy - ndarray: clip() (#7918)
* [Term Entry] Python NumPy - ndarray: clip() * minor changes * minor content fixes ---------
1 parent 25b6483 commit 33a641d

File tree

1 file changed

+98
-0
lines changed
  • content/numpy/concepts/ndarray/terms/clip

1 file changed

+98
-0
lines changed
Lines changed: 98 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
---
2+
Title: '.clip()'
3+
Description: 'Limits the values in an array to a specified range.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Arrays'
9+
- 'Math'
10+
- 'Methods'
11+
- 'NumPy'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/computer-science'
15+
---
16+
17+
Numpy's **`.clip()`** method limits the values in an [array](https://www.codecademy.com/resources/docs/numpy/ndarray) to a specified range by replacing values below a minimum or above a maximum with those boundary values.
18+
19+
## Syntax
20+
21+
```pseudo
22+
ndarray.clip(min=None, max=None, out=None)
23+
```
24+
25+
**Parameters:**
26+
27+
- `min`: The minimum value to clip array elements to. All values below this will be set to `min`.
28+
- `max`: The maximum value to clip array elements to. All values above this will be set to `max`.
29+
- `out`: Output array for storing the result. Must have the same shape as the input array.
30+
31+
**Return value:**
32+
33+
Returns an array in which all values are clipped to the specified range. If `out` is provided, the result is stored in it and a reference to `out` is returned.
34+
35+
## Example 1: Clipping an Array Using `.clip()`
36+
37+
In this example, `.clip()` is used without the `out` parameter to restrict all values of an array to a given range:
38+
39+
```py
40+
import numpy as np
41+
42+
# Create an array
43+
np_array = np.array([0, 1, 1, 2, 3, 5, 8, 13, 21])
44+
45+
# Clip values between 3 and 9
46+
clipped_array = np_array.clip(min=3, max=9)
47+
48+
# Print clipped array
49+
print("Clipped Array: ", clipped_array)
50+
```
51+
52+
The output of this code is:
53+
54+
```shell
55+
Clipped Array: [3 3 3 3 3 5 8 9 9]
56+
```
57+
58+
## Example 2: Element-Wise Clipping Using `.clip()`
59+
60+
This example demonstrates using arrays for `min` and `max` to clip values element-wise:
61+
62+
```py
63+
import numpy as np
64+
65+
np_array = np.array([[[20, -1, 12], [2, -3, 50]]])
66+
output_array = np.empty_like(np_array)
67+
68+
min_vals = np.array([[[-1, 4, 7], [10, -13, 16]]])
69+
max_vals = np.array([[[2, 5, 11], [13, 17, 19]]])
70+
71+
np_array.clip(min_vals, max_vals, out=output_array)
72+
73+
print("Clipped Array:\n", output_array)
74+
```
75+
76+
The output of this code is:
77+
78+
```shell
79+
Clipped Array:
80+
[[[ 2 4 11]
81+
[10 -3 19]]]
82+
```
83+
84+
## Codebyte Example
85+
86+
In this example, `.clip()` is provided with an integer for `min` and an array for `max`:
87+
88+
```codebyte/python
89+
import numpy as np
90+
91+
# Create an array of 10 integers
92+
np_array = np.array([4, 3, 7, -23, 5, 6, 4, 324, -94, 2])
93+
print("Array: ", np_array)
94+
95+
# Provide an integer for min and an array of 10 for max
96+
clipped_array = np_array.clip(-4, [0, 1, 1, 2, 4, 7, 13, 24, 44, 81])
97+
print("Clipped Array: ", clipped_array)
98+
```

0 commit comments

Comments
 (0)