|
| 1 | +--- |
| 2 | +Title: '.logical_and()' |
| 3 | +Description: 'Performs an element-wise logical AND operation on two input tensors, returning a tensor of Boolean values.' |
| 4 | +Subjects: |
| 5 | + - 'Data Science' |
| 6 | + - 'Machine Learning' |
| 7 | +Tags: |
| 8 | + - 'Logical' |
| 9 | + - 'Operators' |
| 10 | + - 'Python' |
| 11 | + - 'PyTorch' |
| 12 | + - 'Tensors' |
| 13 | +CatalogContent: |
| 14 | + - 'intro-to-py-torch-and-neural-networks' |
| 15 | + - 'py-torch-for-classification' |
| 16 | +--- |
| 17 | + |
| 18 | +The **`torch.logical_and()`** function in PyTorch performs an element-wise logical AND operation between two [tensors](https://www.codecademy.com/resources/docs/pytorch/tensors). It returns a new tensor with boolean values (`True` or `False`) depending on whether the corresponding elements in both input tensors evaluate to `True`. |
| 19 | + |
| 20 | +This operation is often used in tensor-based computations where conditional checks need to be applied element-wise, such as in masking or filtering data. |
| 21 | + |
| 22 | +## Syntax |
| 23 | + |
| 24 | +```pseudo |
| 25 | +torch.logical_and(input, other, *, out=None) |
| 26 | +``` |
| 27 | + |
| 28 | +**Parameters:** |
| 29 | + |
| 30 | +- `input` (Tensor): The first tensor for the logical AND operation. |
| 31 | +- `other` (Tensor): The second tensor, must be broadcastable to the shape of `input`. |
| 32 | +- `out` (Tensor, optional): The output tensor to store the result. |
| 33 | + |
| 34 | +**Return value:** |
| 35 | + |
| 36 | +A tensor of type `torch.bool` containing the result of the element-wise logical AND operation. |
| 37 | + |
| 38 | +## Example 1: Basic Usage |
| 39 | + |
| 40 | +In this example, two Boolean tensors are compared element-wise using `torch.logical_and()`: |
| 41 | + |
| 42 | +```py |
| 43 | +import torch |
| 44 | + |
| 45 | +a = torch.tensor([True, False, True]) |
| 46 | +b = torch.tensor([True, True, False]) |
| 47 | + |
| 48 | +result = torch.logical_and(a, b) |
| 49 | +print(result) |
| 50 | +``` |
| 51 | + |
| 52 | +The output of this code is as follows: |
| 53 | + |
| 54 | +```shell |
| 55 | +tensor([True, False, False]) |
| 56 | +``` |
| 57 | + |
| 58 | +## Example 2: Using with Integer Tensors |
| 59 | + |
| 60 | +In this example, integer tensors are treated as Boolean values, with nonzero as `True` and 0 as `False`: |
| 61 | + |
| 62 | +```py |
| 63 | +import torch |
| 64 | + |
| 65 | +x = torch.tensor([1, 0, 3]) |
| 66 | +y = torch.tensor([2, 0, 0]) |
| 67 | + |
| 68 | +result = torch.logical_and(x, y) |
| 69 | +print(result) |
| 70 | +``` |
| 71 | + |
| 72 | +The output of this code is: |
| 73 | + |
| 74 | +```shell |
| 75 | +tensor([True, False, False]) |
| 76 | +``` |
| 77 | + |
| 78 | +## Example 3: Broadcasting in `torch.logical_and()` |
| 79 | + |
| 80 | +In this example, [broadcasting](https://pytorch.org/docs/stable/notes/broadcasting.html) allows a smaller tensor to be compared across the rows of a larger tensor. |
| 81 | + |
| 82 | +```py |
| 83 | +import torch |
| 84 | + |
| 85 | +m = torch.tensor([[1, 0], [0, 1]]) |
| 86 | +n = torch.tensor([1, 0]) |
| 87 | + |
| 88 | +result = torch.logical_and(m, n) |
| 89 | +print(result) |
| 90 | +``` |
| 91 | + |
| 92 | +The output of this code will be: |
| 93 | + |
| 94 | +```shell |
| 95 | +tensor([[True, False], |
| 96 | + [False, False]]) |
| 97 | +``` |
0 commit comments