Skip to content

Commit 8928eb5

Browse files
authored
minor formatting fixes
1 parent 9a7d774 commit 8928eb5

File tree

1 file changed

+9
-4
lines changed

1 file changed

+9
-4
lines changed

docs/getting-started/example-datasets/dbpedia.md

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@ description: 'Dataset containing 1 million articles from Wikipedia and their vec
33
sidebar_label: 'dbpedia dataset'
44
slug: /getting-started/example-datasets/dbpedia-dataset
55
title: 'dbpedia dataset'
6+
keywords: ['semantic search', 'vector similarity', 'approximate nearest neighbours', 'embeddings']
67
---
78

89
The [dbpedia dataset](https://huggingface.co/datasets/Qdrant/dbpedia-entities-openai3-text-embedding-3-large-1536-1M) contains 1 million articles from Wikipedia and their vector embeddings generated using the `text-embedding-3-large` model from OpenAI.
@@ -84,8 +85,10 @@ SELECT id, title
8485
FROM dbpedia
8586
ORDER BY cosineDistance(vector, ( SELECT vector FROM dbpedia WHERE id = '<dbpedia:The_Remains_of_the_Day>') ) ASC
8687
LIMIT 20
88+
```
8789

88-
```response title="Response" ┌─id────────────────────────────────────────┬─title───────────────────────────┐
90+
```response title="Response"
91+
┌─id────────────────────────────────────────┬─title───────────────────────────┐
8992
1. │ <dbpedia:The_Remains_of_the_Day> │ The Remains of the Day │
9093
2. │ <dbpedia:The_Remains_of_the_Day_(film)> │ The Remains of the Day (film) │
9194
3. │ <dbpedia:Never_Let_Me_Go_(novel)> │ Never Let Me Go (novel) │
@@ -122,7 +125,6 @@ Run the following SQL to define and build a vector similarity index on the `vect
122125
```sql
123126
ALTER TABLE dbpedia ADD INDEX vector_index vector TYPE vector_similarity('hnsw', 'cosineDistance', 1536, 'bf16', 64, 512);
124127

125-
126128
ALTER TABLE dbpedia MATERIALIZE INDEX vector_index;
127129
```
128130

@@ -136,7 +138,7 @@ _Approximate Nearest Neighbours_ or ANN refers to group of techniques (e.g., spe
136138

137139
Once the vector similarity index has been built, vector search queries will automatically use the index:
138140

139-
```sql
141+
```sql title="Query"
140142
SELECT
141143
id,
142144
title
@@ -147,8 +149,10 @@ ORDER BY cosineDistance(vector, (
147149
WHERE id = '<dbpedia:Glacier_Express>'
148150
)) ASC
149151
LIMIT 20
152+
```
150153

151-
```response title="Response" ┌─id──────────────────────────────────────────────┬─title─────────────────────────────────┐
154+
```response title="Response"
155+
┌─id──────────────────────────────────────────────┬─title─────────────────────────────────┐
152156
1. │ <dbpedia:Glacier_Express> │ Glacier Express │
153157
2. │ <dbpedia:BVZ_Zermatt-Bahn> │ BVZ Zermatt-Bahn │
154158
3. │ <dbpedia:Gornergrat_railway> │ Gornergrat railway │
@@ -172,6 +176,7 @@ LIMIT 20
172176
└─────────────────────────────────────────────────┴───────────────────────────────────────┘
173177
#highlight-next-line
174178
20 rows in set. Elapsed: 0.025 sec. Processed 32.03 thousand rows, 2.10 MB (1.29 million rows/s., 84.80 MB/s.)
179+
```
175180

176181
## Generating embeddings for search query {#generating-embeddings-for-search-query}
177182

0 commit comments

Comments
 (0)