You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+30-67Lines changed: 30 additions & 67 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -15,7 +15,7 @@ Furthermore, we will process images with [numpy](https://numpy.org), [scipy](htt
15
15
We will explore [napari](https://napari.org) and [Fiji](https://fiji.sc) for interactive image data analysis.
16
16
Finally, we will use [scikit-learn](https://scikit-learn.org/stable/), [CellPose](https://github.com/MouseLand/cellpose) and [StarDist](https://github.com/stardist/stardist) to process images using machine learning techniques.
17
17
18
-
As we are continuing the develop the material, old versions are saved as releases. For example, the material which was relevant for the summer semester 2021 at Biotec / CMCB its exam can be downloaded [here](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/releases/tag/2021.08.03).
18
+
The material will develop between April and July 2022. The materials from former years are linked below.
19
19
20
20
## How to use this material
21
21
You can browse the material online for taking a quick look.
@@ -25,8 +25,6 @@ In order to execute code and do the exercises, you need to install conda, which
25
25
26
26
<imgsrc="images/download.png"width="200"/>
27
27
28
-
Instead of downloading this zip file, you can also use the command line tool git for downloading the files. It allows updating a local copy of this online repository but is also a bit more tricky to use. Check out the [Carpentries tutorial about git](https://swcarpentry.github.io/git-novice/) to find out more.
29
-
30
28
This course explains everything in very detail.
31
29
Every lesson ends with an exercise and it is recommended to do it before moving on to the next lesson.
32
30
If you have python basics knowledge already, test yourself by doing these exercises before starting with an advanced lesson.
@@ -37,72 +35,37 @@ If you have any questions, please use the anonymous etherpad (see email) or open
37
35
38
36
## Contents
39
37
40
-
* Block 1 - Introduction
41
-
*[Introduction to bio-image analysis, programming, bio-statistics and machine learning](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/00_Introduction_QBIA.pdf)
42
-
*[Setting up a conda environment](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/conda_basics/01_conda_environments.md)
43
-
*[Our first jupyter notebook](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/01_our_first_juptyer_notebook.ipynb)
44
-
*[Trailer: bio-image analysis, machine learning and bio-statistics with python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/00_trailer.ipynb)
45
-
* Block 2 - Data structures
46
-
*[Introduction to Python data structures](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/00_Python_data_structures.pdf)
47
-
*[Basic math in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/02_Math_in_python.ipynb)
48
-
*[Pitfalls when using notebooks](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/03_Dont_try_this_at_home.ipynb)
49
-
*[Basic types in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/04_Basic_types.ipynb)
50
-
*[Arrays, lists and tuples](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/05_Arrays_lists_tuples.ipynb)
51
-
*[Dictionaries and tables](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/06_Dictionaries_and_tables.ipynb)
52
-
* Block 3 - Algorithms
53
-
*[Introduction to Python algorithms](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/00_Python_algorithms.pdf)
*[Introduction to image filtering](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/01_Image_Filtering.pdf)
60
-
*[Images in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/01_Introduction_to_image_processing.ipynb)
61
-
*[Working with images](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/02_Working_with_images.ipynb)
*[Introduction to image segmentation](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/07_Image_segmentation.pdf)
66
-
*[Interactive visualization with napari](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/05_napari.ipynb)
67
-
*[Image segmentation in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/06_Introduction_to_image_segmentation.ipynb)
* Block 6 - GPU-accelerated image processing and quantitative measurements
73
-
*[Introduction to GPU-accelerated image processing and quantitative measurements](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/00_GPU_acceleration_Quantitatve_measurements.pdf)
*[Quantitative measurements with skimage regionprops](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/11_quantitative_measurements.ipynb)
*[Processing tabular data using pandas](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/processing_tables_with_pandas.ipynb)
90
-
*[Functional parameters in python](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/12_functional_parameters.ipynb)
91
-
* Block 10 - Hypothesis testing
92
-
*[Follow up: Handling NaNs in Pandas DataFrames](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Handling_NaNs_in_Pandas_DataFrames.ipynb)
93
-
*[Hypotheses in the statistical sense](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Stats3_without_pictures.pdf)
*[Introduction to Machine Learning](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/machine_learning/Machine_Learning_for_BioImage_Analysis.pdf)
100
-
*[Pixel classification using Scikit-learn](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/machine_learning/scikit_learn_random_forest_pixel_classifier.ipynb)
*[Analyzing fluorescence microscopy images with ImageJ by Pete Bankhead](https://petebankhead.gitbooks.io/imagej-intro/content/)
108
71
*[Basics of Image Processing and Analysis by Kota Miura](https://github.com/miura/ij_textbook1/raw/76b51338e1f006c580b6f0f5cfc48fe02fba38d7/CMCIBasicCourse201102Bib.pdf)
0 commit comments