Skip to content

Commit 2e0cdcb

Browse files
committed
Setting up materials for the 2022 coruse
1 parent a62070d commit 2e0cdcb

File tree

74 files changed

+30
-22401
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

74 files changed

+30
-22401
lines changed
File renamed without changes.
File renamed without changes.
File renamed without changes.

README.md

Lines changed: 30 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ Furthermore, we will process images with [numpy](https://numpy.org), [scipy](htt
1515
We will explore [napari](https://napari.org) and [Fiji](https://fiji.sc) for interactive image data analysis.
1616
Finally, we will use [scikit-learn](https://scikit-learn.org/stable/), [CellPose](https://github.com/MouseLand/cellpose) and [StarDist](https://github.com/stardist/stardist) to process images using machine learning techniques.
1717

18-
As we are continuing the develop the material, old versions are saved as releases. For example, the material which was relevant for the summer semester 2021 at Biotec / CMCB its exam can be downloaded [here](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/releases/tag/2021.08.03).
18+
The material will develop between April and July 2022. The materials from former years are linked below.
1919

2020
## How to use this material
2121
You can browse the material online for taking a quick look.
@@ -25,8 +25,6 @@ In order to execute code and do the exercises, you need to install conda, which
2525

2626
<img src="images/download.png" width="200"/>
2727

28-
Instead of downloading this zip file, you can also use the command line tool git for downloading the files. It allows updating a local copy of this online repository but is also a bit more tricky to use. Check out the [Carpentries tutorial about git](https://swcarpentry.github.io/git-novice/) to find out more.
29-
3028
This course explains everything in very detail.
3129
Every lesson ends with an exercise and it is recommended to do it before moving on to the next lesson.
3230
If you have python basics knowledge already, test yourself by doing these exercises before starting with an advanced lesson.
@@ -37,72 +35,37 @@ If you have any questions, please use the anonymous etherpad (see email) or open
3735

3836
## Contents
3937

40-
* Block 1 - Introduction
41-
* [Introduction to bio-image analysis, programming, bio-statistics and machine learning](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/00_Introduction_QBIA.pdf)
42-
* [Setting up a conda environment](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/conda_basics/01_conda_environments.md)
43-
* [Our first jupyter notebook](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/01_our_first_juptyer_notebook.ipynb)
44-
* [Trailer: bio-image analysis, machine learning and bio-statistics with python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/00_trailer.ipynb)
45-
* Block 2 - Data structures
46-
* [Introduction to Python data structures](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/00_Python_data_structures.pdf)
47-
* [Basic math in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/02_Math_in_python.ipynb)
48-
* [Pitfalls when using notebooks](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/03_Dont_try_this_at_home.ipynb)
49-
* [Basic types in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/04_Basic_types.ipynb)
50-
* [Arrays, lists and tuples](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/05_Arrays_lists_tuples.ipynb)
51-
* [Dictionaries and tables](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/06_Dictionaries_and_tables.ipynb)
52-
* Block 3 - Algorithms
53-
* [Introduction to Python algorithms](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/00_Python_algorithms.pdf)
54-
* [The conditional, "if" statement](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/07_Conditions.ipynb)
55-
* [Loops](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/08_loops.ipynb)
56-
* [Functions](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/09_custom_functions.ipynb)
57-
* [Libraries](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/10_custom_libraries.ipynb)
58-
* Block 4 - Image processing
59-
* [Introduction to image filtering](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/01_Image_Filtering.pdf)
60-
* [Images in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/01_Introduction_to_image_processing.ipynb)
61-
* [Working with images](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/02_Working_with_images.ipynb)
62-
* [Multi-channel images](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/03_multi_channel_image_data.ipynb)
63-
* [Filtering](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/04_Filtering.ipynb)
64-
* Block 5 - Image segmentation
65-
* [Introduction to image segmentation](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/07_Image_segmentation.pdf)
66-
* [Interactive visualization with napari](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/05_napari.ipynb)
67-
* [Image segmentation in python](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/06_Introduction_to_image_segmentation.ipynb)
68-
* [Thresholding](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/07_Thresholding.ipynb)
69-
* [Binary mask refinement](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/08_binary_mask_refinement.ipynb)
70-
* [Labeling](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/09_Labeling.ipynb)
71-
* [Homework: OpenCL Installation](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/01_opencl_installation.md)
72-
* Block 6 - GPU-accelerated image processing and quantitative measurements
73-
* [Introduction to GPU-accelerated image processing and quantitative measurements](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/00_GPU_acceleration_Quantitatve_measurements.pdf)
74-
* [3D image processing](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/10_nd_image_data.ipynb)
75-
* [Why GPU-acceleration](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/03_why_GPU_acceleration.ipynb)
76-
* [GPU-accelerated image processing](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/02_clesperanto.ipynb)
77-
* [Quantitative measurements with skimage regionprops](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/11_quantitative_measurements.ipynb)
78-
* [Processing folders](http://nbviewer.jupyter.org/github/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/12_process_folders.ipynb)
79-
* [Homework: automatic cell count](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/gpu_acceleration/homework_automatic_cellcount.pdf)
80-
* Block 7 - Introduction to Biostatistics
81-
* [Introduction to Biostatistics](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Stats1_without_pictures.pdf)
82-
* [Confidence intervals of a proportion](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/stats1.ipynb)
83-
* Block 8 - Descriptive statistics
84-
* [Lecture for descriptive statistics](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Stats2.pdf)
85-
* [Descriptive statistics and distributions](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/stats2.ipynb)
86-
* Block 9 - Method Comparison - Bland-Altman analysis
87-
* [Method comparison studies](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Method_comparion_bland_altman.pdf)
88-
* [Bland-Altman analysis](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Bland_Altman_analysis.ipynb)
89-
* [Processing tabular data using pandas](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/processing_tables_with_pandas.ipynb)
90-
* [Functional parameters in python](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/python_basics/12_functional_parameters.ipynb)
91-
* Block 10 - Hypothesis testing
92-
* [Follow up: Handling NaNs in Pandas DataFrames](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Handling_NaNs_in_Pandas_DataFrames.ipynb)
93-
* [Hypotheses in the statistical sense](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Stats3_without_pictures.pdf)
94-
* [Testing statistics](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/stats3.ipynb)
95-
* Block 11 - Big data and data visualization
96-
* [Non-parametric testing](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/Stats4.pdf)
97-
* [Nonparametric testing](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/biostatistics/stats4.ipynb)
98-
* Block 12 - Machine learning I
99-
* [Introduction to Machine Learning](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/machine_learning/Machine_Learning_for_BioImage_Analysis.pdf)
100-
* [Pixel classification using Scikit-learn](http://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/machine_learning/scikit_learn_random_forest_pixel_classifier.ipynb)
101-
* Block 13 - Machine learning II
102-
* Block 14 - Summary
103-
* [Semester summary](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/image_processing/99_BIA_Summary_2021.pdf)
38+
* Introduction (2022-Apr-05)
39+
* Introduction to bio-image analysis, programming, bio-statistics and machine learning
40+
* [Trailer](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/01_python_basics/00_trailer.ipynb)
41+
* [Setting up your computer with conda](https://biapol.github.io/blog/johannes_mueller/anaconda_getting_started/)
42+
* [Our first jupyter notebook](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/01_python_basics/01_our_first_juptyer_notebook.ipynb)
43+
* [Math in Python](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/01_python_basics/02_Math_in_python.ipynb)
44+
* [Basic types in Python](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/blob/main/01_python_basics/03_Basic_types.ipynb)
45+
46+
* Python data structures + images (2022-Apr-12)
47+
* Python algorithms + introduction to image processing (2022-Apr-19)
48+
* Image filtering + image segmentation (2022-Apr-26)
49+
* Quantitative image analysis (2022-May-03)
50+
* Machine learning for bio-image analysis (2022-May-10)
51+
* Introduction to Biostatistics (2022-May-17)
52+
* Descriptive statistics (2022-May-24)
53+
* Method Comparison - Bland-Altman analysis (2022-May-31)
54+
* break
55+
* Hypothesis testing (2022-Jun-14)
56+
* Multiple comparisons and correlations (2022-Jun-21)
57+
* Big data, clustering, dimensionality reduction (2022-Jun-28)
58+
* Deep learning (2022-Jul-5)
59+
* Summary / exam preparation (2022-Jul-12)
10460

10561
## See also
62+
63+
### Former & future lecture materials
64+
* [Bio-image Analysis, programming, bio-statistics and machine learning 2021](https://github.com/BiAPoL/Bio-image_Analysis_with_Python/releases/tag/2021.08.03)
65+
* [Bio-image Analysis, programming, bio-statistics and machine learning 2020](https://git.mpi-cbg.de/rhaase/lecture_applied_bioimage_analysis_2020)
66+
* [Bio-image Analysis, ImageJ Macro programming 2019](https://git.mpi-cbg.de/rhaase/lecture_applied_bioimage_analysis)
67+
* [Bio-image Analysis Notebooks](https://haesleinhuepf.github.io/BioImageAnalysisNotebooks/)
68+
10669
### Image Analysis
10770
* [Analyzing fluorescence microscopy images with ImageJ by Pete Bankhead](https://petebankhead.gitbooks.io/imagej-intro/content/)
10871
* [Basics of Image Processing and Analysis by Kota Miura](https://github.com/miura/ij_textbook1/raw/76b51338e1f006c580b6f0f5cfc48fe02fba38d7/CMCIBasicCourse201102Bib.pdf)

biostatistics/.DS_Store

-6 KB
Binary file not shown.

biostatistics/Bland_Altman_analysis.ipynb

Lines changed: 0 additions & 787 deletions
This file was deleted.

0 commit comments

Comments
 (0)