Skip to content

Commit 21e9b1d

Browse files
committed
fixed little mistake in exercise, added lecture
1 parent e5c0de5 commit 21e9b1d

File tree

3 files changed

+12
-11
lines changed

3 files changed

+12
-11
lines changed

.DS_Store

6 KB
Binary file not shown.
15.2 MB
Binary file not shown.

biostatistics/stats1.ipynb

Lines changed: 12 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@
3030
},
3131
{
3232
"cell_type": "code",
33-
"execution_count": 37,
33+
"execution_count": 4,
3434
"id": "4801aaf4",
3535
"metadata": {},
3636
"outputs": [],
@@ -57,7 +57,7 @@
5757
},
5858
{
5959
"cell_type": "code",
60-
"execution_count": 3,
60+
"execution_count": 5,
6161
"id": "d43cea81",
6262
"metadata": {},
6363
"outputs": [],
@@ -107,7 +107,7 @@
107107
},
108108
{
109109
"cell_type": "code",
110-
"execution_count": 13,
110+
"execution_count": 7,
111111
"id": "622175af",
112112
"metadata": {},
113113
"outputs": [
@@ -144,7 +144,7 @@
144144
},
145145
{
146146
"cell_type": "code",
147-
"execution_count": 20,
147+
"execution_count": 8,
148148
"id": "17105b2e",
149149
"metadata": {},
150150
"outputs": [
@@ -183,13 +183,13 @@
183183
},
184184
{
185185
"cell_type": "code",
186-
"execution_count": 28,
186+
"execution_count": 9,
187187
"id": "43e5d702",
188188
"metadata": {},
189189
"outputs": [
190190
{
191191
"data": {
192-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ30lEQVR4nO3dd7RU9b3+8fdDE1C6R0WpKhdL1GhQUBI1ID/sHYI/EzHRYC83GoNGo1Hx6oqKvQcvFkTEAkFDVBB7UBDLRWJEKR5FRIqg0vO5f8xm34FwzhkOZ2ZOeV5rzZrZ7bs/M2vBc777u4siAjMzM4B6xS7AzMyqD4eCmZmlHApmZpZyKJiZWcqhYGZmKYeCmZmlHApWY0n6b0nX5rhuV0nTJC2TdH6+a9sUkg6WVFrFbXaSFJIaJNOTJJ1elfuw2qlBsQswK5BLgEkRsXexCzGrztxTsLqiIzC9Mhuu+2vbrC5wKFiNIWlvSe8kh4AeBxpvsPxISe9KWiLpDUl7JvMnAj8F7pD0raT/kNRC0kOSFkiaI+lySfWS9U+V9LqkoZIWAVclh6rukvTXpI3XJW0n6RZJiyX9Q9LeWbVsL+nJpP1Z2YesJDVJ2lss6UNg3wq+9+6SXpC0SNJ8SZcl8+tJGizpE0kLJY2S1DqH33FnSS9L+kbS18lvaQY4FKyGkNQIeAZ4GGgNPAGckLV8H2AYcAbQBrgXGCtpi4joBbwKnBsRW0XEP4HbgRbAjsBBwCnAL7N22R34FNgGGJLM6w9cDmwNrATeBN5JpkcDNye11AP+ArwH7AD0Bi6U1Ddp50pgp+TVFxhYzvduBrwIjAe2B3YGJiSLzweOTerfHlgM3Fn2r5i6BngeaAW0S34LM8ChYDVHD6AhcEtErI6I0cDbWct/DdwbEZMjYm1EDCfzH3ePDRuSVB/4GXBpRCyLiNnATcAvslb7IiJuj4g1EbE8mfd0REyNiBXA08CKiHgoItYCjwPregr7AiURcXVErIqIT4H7gQHJ8v7AkIhYFBGfAbeV872PBL6MiJsiYkVS7+Rk2RnA7yOiNCJWAlcBJ+ZwuGs1mcNp2ydtvlbB+laHOBSsptge+DzWv4PjnKzPHYGLkkNHSyQtAdon221oa6DRBtvPIfNX/TqfbWS7+Vmfl29kequsWrbfoJbLgG2zvkt2+9l1bKg98EkZyzoCT2ftYwawNms/ZbkEEPCWpOmSflXB+laHOBSsppgH7CBJWfM6ZH3+jMxf3y2zXk0j4rGNtPU1//fXcnZbn2dNb87tgz8DZm1QS7OIODzru7Qv43tsrK2dyll22Ab7aRwRn5exPgAR8WVE/DoitifT27hL0s65fTWr7RwKVlO8CawBzpfUQNLxwH5Zy+8HzpTUXRlbSjoiOSa/nuRwzyhgiKRmkjoCvwEeqaJa3wKWSvpdMqhcX9IPJK0bUB4FXCqplaR2wHnltDUO2E7ShZK2SOrtniy7J/kOHQEklUg6pqLiJPVL9guZcYgg08MwcyhYzRARq4DjgVPJ/Ef2M+CprOVTyIwr3JEsn5msW5bzgO/IDCa/BowgM1BdFbWuBY4CfgjMItMzeYDMwDbAH8kcMppFZsD34XLaWgb0Sdr7EviYzJlUALcCY4HnJS0D/k5mgLwi+wKTJX2bbH9BRMzK/RtabSY/ZMfMzNZxT8HMzFIOBTMzSzkUzMws5VAwM7NUjb7R19Zbbx2dOnUqdhlmZjXK1KlTv46Iko0tq9Gh0KlTJ6ZMmVLsMszMahRJZV5F78NHZmaWciiYmVnKoWBmZimHgpmZpRwKZmaWciiYmVkqb6EgaZikryT9T9a81smzZj9O3ltlLbtU0kxJH2U9ttDMzAoonz2F/wYO3WDeYGBCRHQh85zZwQCSdiPzqMLdk23uSh6ZaGZmBZS3UIiIV4BFG8w+BhiefB5O5qHj6+aPjIiVyX3dZ7L+A1TMzKwACn1F87YRMQ8gIuZJ2iaZvwOZB4SsU8r6z8tNSRoEDALo0KG8pxjm4KoWFa9jZlYdXfVNXpqtLgPN2si8jT79JyLui4huEdGtpGSjt+4wM7NKKnQozJfUFiB5/yqZX8r6DzJvB3xR4NrMzOq8QofCWGBg8nkgMCZr/oDkweSdgS5kHn5uZmYFlLcxBUmPAQcDW0sqBa4ErgdGSToNmAv0A4iI6ZJGAR8Ca4Bzkoefm5lZAeUtFCLipDIW9S5j/SHAkHzVY2ZmFasuA81mZlYNOBTMzCzlUDAzs5RDwczMUg4FMzNLORTMzCzlUDAzs5RDwczMUg4FMzNLORTMzCzlUDAzs5RDwczMUg4FMzNLORTMzCxV6Gc0VyudVowodglmZpUyO0/tuqdgZmYph4KZmaUcCmZmlnIomJlZyqFgZmYph4KZmaUcCmZmlnIomJlZyqFgZmYph4KZmaUcCmZmlnIomJlZyqFgZmYph4KZmaUcCmZmlnIomJlZyqFgZmapooSCpP+UNF3S/0h6TFJjSa0lvSDp4+S9VTFqMzOrywoeCpJ2AM4HukXED4D6wABgMDAhIroAE5JpMzMroGIdPmoANJHUAGgKfAEcAwxPlg8Hji1OaWZmdVfBQyEiPgduBOYC84BvIuJ5YNuImJesMw/YZmPbSxokaYqkKQsWLChU2WZmdUIxDh+1ItMr6AxsD2wp6ee5bh8R90VEt4joVlJSkq8yzczqpGIcPjoEmBURCyJiNfAUcAAwX1JbgOT9qyLUZmZWpxUjFOYCPSQ1lSSgNzADGAsMTNYZCIwpQm1mZnVag0LvMCImSxoNvAOsAaYB9wFbAaMknUYmOPoVujYzs7qu4KEAEBFXAlduMHslmV6DmZkVia9oNjOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzVJlPXpO0Tw7br46ID6qwHjMzK6LyHsf5MvA2oHLW6Qx0qsqCzMyseMoLhbcjold5G0uaWMX1mJlZEZU5plBRIOS6jpmZ1Rzl9RTWI6kEuABoAtwdETPzVpWZmRXFppx9dBPwCjAeeCw/5ZiZWTGVGQqSxkv6SdasRsDs5LVFfssyM7NiKK+n8DPgGEkjJO0EXAH8AbgeOLsQxZmZWWGVOaYQEd8AF0vaERgCfA6ck8w3M7NaqLyL13YEzgJWAxcBOwGjJI0D7oqItYUp0czMCqW8w0ePkRlU/jvwcES8GhF9gaXA84UozszMCqu8U1IbA7OALYGm62ZGxHBJo/JdmJmZFV55oXAW8CdgFXBm9oKIWJ7PoszMrDjKG2h+A3ijgLWYmVmRlXedwn0VbZzLOmZmVnOUd/joWEkrylku4KeV2amklsADwA+AAH4FfAQ8Tuauq7OB/hGxuDLtm5lZ5ZQXCr/NYftXK7nfW4HxEXGipEZkBrIvAyZExPWSBgODgd9Vsn0zM6uE8sYUhudjh5KaAwcCpyb7WQWsknQMcHCy2nBgEg4FM7OCKsbjOHcEFgAPSpom6QFJWwLbRsQ8gOR9myLUZmZWpxUjFBoA+5C5/fbewHdkDhXlRNIgSVMkTVmwYEG+ajQzq5OKEQqlQGlETE6mR5MJifmS2gIk719tbOOIuC8iukVEt5KSkoIUbGZWV1T4kB1J/0Fm0Llj9vqVfepaRHwp6TNJXSPiI6A38GHyGkjmLqwDgTGVad/MzCovlyevPQHcA9wPVNVN8M4DHk3OPPoU+CWZXssoSacBc4F+VbQvMzPLUS6hsCYi7q7KnUbEu0C3jSzqXZX7MTOzTZPLmMJfJJ0tqa2k1uteea/MzMwKLpeewsDkPftitiBzaqmZmdUiFYZCRHQuRCFmZlZ8uZx91JDMbbQPTGZNAu6NiNV5rMvMzIogl8NHdwMNgbuS6V8k807PV1FmZlYcuYTCvhGxV9b0REnv5asgMzMrnlzOPloraad1E5J2pOquVzAzs2okl57Cb4GXJH1K5hkKHclcbGZmZrVMLmcfTZDUBehKJhT+EREr816ZmZkVXJmhIKlXREyUdPwGi3aSREQ8lefazMyswMrrKRwETASO2siyABwKZma1THlPXrsy+Xh1RMzKXibJF7SZmdVCuZx99ORG5o2u6kLMzKz4yhtT2AXYHWixwbhCc6BxvgszM7PCK29MoStwJNCS9ccVlgG/zmNNZmZWJOWNKYyRNA74XURcV8CazMysSModU4iItUCfAtViZmZFlssVzW9IugN4HPhu3cyIeCdvVZmZWVHkEgoHJO9XZ80LoFfVl2NmZsWUy20uflqIQszMrPgqvE5BUgtJN0uakrxuktSiEMWZmVlh5XLx2jAyp6H2T15LgQfzWZSZmRVHLmMKO0XECVnTf5T0bp7qMTOzIsqlp7Bc0o/XTUjqCSzPX0lmZlYsufQUzgKGJ+MIAhYBA/NalZmZFUUuZx+9C+wlqXkyvTTfRZmZWXHkcvZRG0m3AZPIPJbzVklt8l6ZmZkVXC5jCiOBBcAJwInJ58fzWZSZmRVHLmMKrSPimqzpayUdm6d6zMysiHLpKbwkaYCkesmrP/BsvgszM7PCyyUUzgBGAKuS10jgN5KWSfKgs5lZLZLL2UfNClGImZkVXy5jCkg6GjgwmZwUEePyV5KZmRVLLqekXg9cAHyYvC5I5m0WSfUlTUue7oak1pJekPRx8t5qc/dhZmabJpcxhcOBPhExLCKGAYcm8zbXBcCMrOnBwISI6AJMSKbNzKyAcgkFgJZZnzf7ttmS2gFHAA9kzT4GGJ58Hg4cu7n7MTOzTZPLmMJ1wDRJL5G599GBwKWbud9bgEuA7EHsbSNiHkBEzJO0zcY2lDQIGATQoUOHzSzDzMyyldtTkFQP+BfQA3gqee0fESMru0NJRwJfRcTUymwfEfdFRLeI6FZSUlLZMszMbCPK7SlExL8knRsRo4CxVbTPnsDRkg4HGgPNJT0CzJfUNukltAW+qqL9mZlZjnIZU3hB0sWS2idnCLWW1LqyO4yISyOiXUR0AgYAEyPi52RCZ90tuQcCYyq7DzMzq5xcxhR+lbyfkzUvgB2ruJbrgVGSTgPmAv2quH0zM6tALlc0d87XziNiEplbchMRC4He+dqXmZlVrMJQkNQYOBv4MZkewqvAPRGxIs+1mZlZgeVy+OghYBlwezJ9EvAwPrxjZlbr5BIKXSNir6zplyS9l6+CzMyseHI5+2iapB7rJiR1B17PX0lmZlYsufQUugOnSJqbTHcAZkj6AIiI2DNv1ZmZWUHlEgqH5r0KMzOrFnI5JXVOIQoxM7Piy/UuqWZmVgc4FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0sVPBQktZf0kqQZkqZLuiCZ31rSC5I+Tt5bFbo2M7O6rhg9hTXARRGxK9ADOEfSbsBgYEJEdAEmJNNmZlZABQ+FiJgXEe8kn5cBM4AdgGOA4clqw4FjC12bmVldV9QxBUmdgL2BycC2ETEPMsEBbFPGNoMkTZE0ZcGCBQWr1cysLihaKEjaCngSuDAilua6XUTcFxHdIqJbSUlJ/go0M6uDihIKkhqSCYRHI+KpZPZ8SW2T5W2Br4pRm5lZXVaMs48E/BmYERE3Zy0aCwxMPg8ExhS6NjOzuq5BEfbZE/gF8IGkd5N5lwHXA6MknQbMBfpVpvHVq1dTWlrKihUrKlz3/qPbVmYXdUYQzFmymtsnL2bpyn8VuxwzK4CCh0JEvAaojMW9N7f90tJSmjVrRqdOnch0Ssq2unTJ5u6uVosI2rRZynnAkFcWFrscMyuAWndF84oVK2jTpk2FgWAVk0SDps3p2LJhsUsxswKpdaEAOBCqkCRUZsfOzGqbWhkKZmZWOcUYaC6oToOfrdL2xp7bs0rby4fD9t+TEc++RKvWbYpdipnVMO4pVDNr1qwpdglmVofV+p5CMXz+2VzOOaUfe+/bg3envsU227bl1j8/yuxPZ3Ltpb9hxfLvadexM1ffeAfNW7bktH5HsteP9uPdKZM5qM9hvPLieHbZfU8+/OBdFi9ayLVD7+bPdw5l5j8+pO9Rx3HuJZcDcOFpJ/PlvM9ZuXIlJ//qDE48+dTifnEzq/HcU8iTubM+4WcDT+fpCW/SvEULXvzrWC6/8EwuvPQqRr/wOl122Y17brkhXX/Z0m8YNvpZBp5xLgANGjXkwSefo9/Pf8mFp53MZdf+iSdffIMxTzzGksWLAPjjjXcw8rlJPDZuIiOG3ZvONzOrLPcU8mSH9h3ZZfc9ANh1j70onTObZUu/odv+mTGJo088iYvPOjVdv+9Rx6+3/cF9DgNg5112Y6euu1Cy7XYAtOvQkS+/+JyWrVoz4sF7mTh+HADz533O3Fmf0LJV63x/NTOrxRwKedKwUaP0c/169Vn2zTflrt+kadP1phs12gKAevXqrddWvXr1WLtmDW+/+Rp/f20SD415niZNmnJavyNZuXJlFX4DM6uLfPioQLZq3pzmLVryzuQ3ABj31ON06175M5m+XbqU5i1a0qRJU2bN/CfvT5tSVaWaWR1W63sKs68/osxl7xf4NhfXDL37/waaO3Ti6pvurHRbPQ/uzROPDOPEPj3ptFMX9ty7WxVWamZ1lSKi2DVUWrdu3WLKlPX/Qp4xYwa77rprTtsXOhRqqvlzP+XXY+cVuwwzy1LeH7wVkTQ1Ijb6l6QPH5mZWcqhYGZmKYeCmZmlHApmZpZyKJiZWcqhYGZmqVp/nQJXtShz0Z6VaO790+ds8jZ333w9TZtuycAzz9vo8kULv+a8UwewevUqBv/xevbpfkAlKts8V/zn2Rx4SF/6HHFMwfdtZtVH7Q+FGmDyay/TeecuXDv07py3Wbt2LfXr189jVWZWF/nwUZ7cf9uNHH3Qvgw66Vhmf/IxAJ/NnsVZPz+RAYcfzKnHH8asmf/kH9M/4JbrruS1iS/Qv+9PWLF8OX99ZjQnHHIAx/fen6HXXZm22aNrO+688TpOPuoQ3pv6Fj26tmPodVcy4PCDGXTSsXwwbSqn9TuSw3v+kEnPPwdkwuPma6/g/x/RixP79OSJRx4EICK47vLfclyvHpw7sD+LFi4o/I9kZtWOQyEPPnz/XcaPfYrHx7/Mzfc9xPT3pgFw9eALGXzNDYx8bhK/ueIahvz+YnbZfQ/Ovugy/t9RxzHqb6+y9Jsl3PJfV3H/42MZ9bdXmf7eNCaOzzw9bvn337Fz11159C8vss9++7P8++/Yd/8fM/K5STTdcivu+NMQ7hnxNEPvf5i7bvovAJ4e+TBbNWvBiGcnMmLcRJ4a8RClc+cwYfw45nw6k9EvvM4fbriV96a+VbTfy8yqDx8+yoN33nqTXoceSZMmmTufHtTnMFauXMl7U97it2eemq63atWqf9t2+nvT6Lb/j2ndZmsADj+uH1Mnv0GvQ4+gfv36HHL40em6DRs1oufBhwDQZZfdaNSoEQ0bNqTLLrvzRelcAN585SX+OWM6Lz43BoBly5Yyd9YnvDP5DQ49+gTq16/PNtu1Zd8DDszLb2FmNYtDIU8krTf9r/gXzVq0YNTfXi13u/LuRdVoi8brjSM0aNAw3U+9evXWu932mjVr0/YGX30DPQ/uvV5br730wr/VaGbmw0d58KPuBzBx/DhWLF/Od98u45UXx9OkcRN2aN+B58c9A2T+s/7oww/+bds99v4RU//+OosXLWTt2rWMH/Mk3XpU/hbbBxzUiyceHsbq1asBmP3pTL7//jv26X4A48c+xdq1a1kw/0vefrP8sDKzuqH29xSuKvvhNvm6S+que+xF36OOo/+hB9J2h/bsvd/+AFx32/0Muewi7r/tRtasWUPfo4+n6257rLdtybbbcf7v/sDp/Y8iIvhJrz78tO/hla7l+JNO4YvP5jLgsIOICFq12ZpbHniE3oceyVuvv8KJfXrSsfNOm/VsBzOrPXzrbKuQb51tVv341tlmZpZ3DgUzM0vVylCoyYfEqpuIIPDvaVZX1LpQaNy4MQsXLnQwVIGIYM33S5mzZHWxSzGzAql1Zx+1a9eO0tJSFiyo+LYN8xcvL0BFNVcQzFmymtsnLy52KWZWILUuFBo2bEjnzp1zWvewwc/muRozs5ql2h0+knSopI8kzZQ0uNj1mJnVJdUqFCTVB+4EDgN2A06StFtxqzIzqzuqVSgA+wEzI+LTiFgFjAT81BczswKpbmMKOwCfZU2XAt2zV5A0CBiUTH4r6aMC1Wa2qbYGvi52EVY76YbN2rxjWQuqWyhs7Lad651bGhH3AfcVphyzypM0paxbCZhVV9Xt8FEp0D5ruh3wRZFqMTOrc6pbKLwNdJHUWVIjYAAwtsg1mZnVGdXq8FFErJF0LvA3oD4wLCKmF7kss8ryYU6rcWr0rbPNzKxqVbfDR2ZmVkQOBTMzSzkUzPJE0qmS7kg+XyXp4mLXZFYRh4KZmaUcCmabSNIpkt6X9J6khyWVSHpS0tvJq2cF258v6cOkjZGFqtssF9XqlFSz6k7S7sDvgZ4R8bWk1sAdwNCIeE1SBzKnVO9aTjODgc4RsVJSy7wXbbYJHApmm6YXMDoivgaIiEWSDgF2k9K7tDSX1KycNt4HHpX0DPBMHms122QOBbNNI/i3h1bXA/aPiPUe5ZcVEhs6AjgQOBq4QtLuEbGmqgs1qwyPKZhtmglAf0ltAJLDR88D565bQdIPy9pYUj2gfUS8BFwCtAS2ymO9ZpvEPQWzTRAR0yUNAV6WtBaYBpwP3CnpfTL/pl4BziyjifrAI5JakOl1DI2IJfmv3Cw3vs2FmZmlfPjIzMxSDgUzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0s5FMzMLPW/gqE2e/3HtMUAAAAASUVORK5CYII=\n",
192+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEICAYAAACwDehOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAXNklEQVR4nO3de7iVZZ3/8feXU4LKSVFRFJzk52nUNDwyoyby83zIxPTXAcsyp9ScDg6ajVbi2DWmZtpBywY1M0JNxoxUzMxDKHhqgEoUga2IiCJ4AIG+vz/W4zMbAvYGWWvtvdf7dV1caz2n+/mudV3sz7rvZ63njsxEkiSATvUuQJLUdhgKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoaB2KyL+KyIubuW+O0bEExGxOCLOrnZt6yIiDo6Ipg3c5qCIyIjoUizfHxGf2ZDnUMfUpd4FSDVyLnB/Zu5Z70KktsyeghrFQGDq+hz47qdtqREYCmo3ImLPiHi8GAL6BbDRKtuPjognI2JhRDwcEbsX6+8DPgRcHRFvRMT/iYheEXFDRMyPiFkRcUFEdCr2PzUiHoqIKyLiVeCiYqjq+xHxm6KNhyJiq4i4MiJei4g/R8SezWrZOiJuLdqf2XzIKiK6F+29FhHTgL1beN27RsQ9EfFqRMyLiPOL9Z0iYlREPBsRCyJibET0bcX7uENE/D4iXo+IV4r3UgIMBbUTEdEN+BVwI9AX+CXwkWbb9wKuBz4HbAb8CBgfEe/LzEOAPwBnZuYmmflX4HtAL+AfgIOATwKfanbKfYHngC2A0cW6k4ALgM2BpcAjwOPF8jjg8qKWTsB/A08B2wDDgHMi4rCinQuB9xf/DgNGruV1bwrcC0wAtgZ2ACYWm88Gji/q3xp4Dbhmze9i6VvA3UAfYEDxXkiAoaD2Yz+gK3BlZi7LzHHAY822fxb4UWZOyswVmTmGyh/u/VZtKCI6Ax8FzsvMxZn5PPAd4BPNdnsxM7+Xmcsz8+1i3e2ZOSUzlwC3A0sy84bMXAH8Ani3p7A30C8zv5mZ72Tmc8B1wMnF9pOA0Zn5ambOAa5ay+s+GngpM7+TmUuKeicV2z4HfC0zmzJzKXARcGIrhruWURlO27po88EW9lcDMRTUXmwNvJAr38FxVrPnA4EvF0NHCyNiIbBtcdyqNge6rXL8LCqf6t81ZzXHzWv2/O3VLG/SrJatV6nlfGDLZq+lefvN61jVtsCza9g2ELi92TmmAyuanWdNzgUCeDQipkbEp1vYXw3EUFB7MRfYJiKi2brtmj2fQ+XTd+9m/3pk5s9X09Yr/O+n5eZtvdBs+b3cPngOMHOVWjbNzCObvZZt1/A6VtfW+9ey7YhVzrNRZr6whv0ByMyXMvOzmbk1ld7G9yNih9a9NHV0hoLai0eA5cDZEdElIk4A9mm2/TrgjIjYNyo2joijijH5lRTDPWOB0RGxaUQMBL4E3LSBan0UWBQR/1ZcVO4cEf8YEe9eUB4LnBcRfSJiAHDWWtq6E9gqIs6JiPcV9e5bbPth8RoGAkREv4g4rqXiImJEcV6oXIdIKj0MyVBQ+5CZ7wAnAKdS+UP2UeC2ZtsnU7mucHWxfUax75qcBbxJ5WLyg8DNVC5Ub4haVwDHAB8AZlLpmfyYyoVtgG9QGTKaSeWC741raWsxMLxo7yXgGSrfpAL4LjAeuDsiFgN/pHKBvCV7A5Mi4o3i+C9m5szWv0J1ZOEkO5Kkd9lTkCSVDAVJUslQkCSVDAVJUqld3+hr8803z0GDBtW7DElqV6ZMmfJKZvZb3bZ2HQqDBg1i8uTJ9S5DktqViFjjr+gdPpIklQwFSVLJUJAklQwFSVLJUJAklQwFSVKpaqEQEddHxMsR8T/N1vUt5pp9pnjs02zbeRExIyL+0mzaQklSDVWzp/BfwOGrrBsFTMzMwVTmmR0FEBG7UJmqcNfimO8XUyZKkmqoaqGQmQ8Ar66y+jhgTPF8DJVJx99df0tmLi3u6z6DlSdQkSTVQK1/0bxlZs4FyMy5EbFFsX4bKhOEvKuJlefLLUXE6cDpANttt7ZZDFvhol4t7yNJbdFFr1el2bZyoTlWs261s/9k5rWZOSQzh/Trt9pbd0iS1lOtQ2FeRPQHKB5fLtY3sfJE5gOAF2tcmyQ1vFqHwnhgZPF8JHBHs/UnFxOTbw8MpjL5uSSphqp2TSEifg4cDGweEU3AhcClwNiIOA2YDYwAyMypETEWmAYsB75QTH4uSaqhqoVCZp6yhk3D1rD/aGB0teqRJLWsrVxoliS1AYaCJKlkKEiSSoaCJKlkKEiSSoaCJKlkKEiSSoaCJKlkKEiSSoaCJKlkKEiSSoaCJKlkKEiSSoaCJKlU6zma25RBS26udwmStF6er1K79hQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSSVDQZJUMhQkSaW6hEJE/GtETI2I/4mIn0fERhHRNyLuiYhnisc+9ahNkhpZzUMhIrYBzgaGZOY/Ap2Bk4FRwMTMHAxMLJYlSTVUr+GjLkD3iOgC9ABeBI4DxhTbxwDH16c0SWpcNQ+FzHwBuAyYDcwFXs/Mu4EtM3Nusc9cYIvVHR8Rp0fE5IiYPH/+/FqVLUkNoR7DR32o9Aq2B7YGNo6Ij7f2+My8NjOHZOaQfv36VatMSWpI9Rg+OhSYmZnzM3MZcBtwADAvIvoDFI8v16E2SWpo9QiF2cB+EdEjIgIYBkwHxgMji31GAnfUoTZJamhdan3CzJwUEeOAx4HlwBPAtcAmwNiIOI1KcIyodW2S1OhqHgoAmXkhcOEqq5dS6TVIkurEXzRLkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVJdQiIjeETEuIv4cEdMjYv+I6BsR90TEM8Vjn3rUJkmNrF49he8CEzJzJ2APYDowCpiYmYOBicWyJKmGah4KEdETOBD4CUBmvpOZC4HjgDHFbmOA42tdmyQ1unr0FP4BmA/8NCKeiIgfR8TGwJaZORegeNyiDrVJUkOrRyh0AfYCfpCZewJvsg5DRRFxekRMjojJ8+fPr1aNktSQ6hEKTUBTZk4qlsdRCYl5EdEfoHh8eXUHZ+a1mTkkM4f069evJgVLUqOoeShk5kvAnIjYsVg1DJgGjAdGFutGAnfUujZJanRd6nTes4CfRUQ34DngU1QCamxEnAbMBkbUqTZJalh1CYXMfBIYsppNw2pciiSpGX/RLEkqrXMoRESn4rcGkqQOplWhEBE3R0TP4vcE04C/RMRXq1uaJKnWWttT2CUzF1H5lfFdwHbAJ6pVlCSpPlobCl0joiuVULgjM5cBWbWqJEl10dpQ+BHwPLAx8EBEDAQWVasoSVJ9tOorqZl5FXBVs1WzIuJD1SlJklQvaw2FiPhSC8dfvgFrkSTVWUs9hU1rUoUkqU1Yayhk5jdqVYgkqf5aGj66am3bM/PsDVuOJKmeWho+mlKTKiRJbUJLw0djmi9HxMaZ+WZ1S5Ik1Utrb3Oxf0RMA6YXy3tExPerWpkkqeZa++O1K4HDgAUAmfkUcGCVapIk1Umr75KamXNWWbViA9ciSaqz1k6yMyciDgCymC3tbIqhJElSx9HansIZwBeAbYAm4APA56tUkySpTlrbU/gOcGZmvgYQEX2KdZ+uVmGSpNprbU9h93cDAaB4vmd1SpIk1UtrQ6FT0TsAICL60vpehiSpnViX4aOHI2Iclcl1TgJGV60qSVJdtHY+hRsiYjJwCBDACZk5raqVSZJqrtVDQEUIGASS1IG1+sdrkqSOz1CQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSyVCQJJUMBUlSqW6hEBGdI+KJiLizWO4bEfdExDPFY5+W2pAkbVj17Cl8kZVnbxsFTMzMwcDEYlmSVEN1CYWIGAAcBfy42erjgDHF8zHA8TUuS5IaXr16ClcC5wJ/a7Zuy8ycC1A8brG6AyPi9IiYHBGT58+fX/VCJamR1DwUIuJo4OXMnLI+x2fmtZk5JDOH9OvXbwNXJ0mNrR6zpw0Fjo2II4GNgJ4RcRMwLyL6Z+bciOgPvFyH2iSpodW8p5CZ52XmgMwcBJwM3JeZHwfGAyOL3UYCd9S6NklqdG3pdwqXAsMj4hlgeLEsSaqhegwflTLzfuD+4vkCYFg965GkRteWegqSpDozFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJpZqHQkRsGxG/i4jpETE1Ir5YrO8bEfdExDPFY59a1yZJja4ePYXlwJczc2dgP+ALEbELMAqYmJmDgYnFsiSphmoeCpk5NzMfL54vBqYD2wDHAWOK3cYAx9e6NklqdHW9phARg4A9gUnAlpk5FyrBAWyxhmNOj4jJETF5/vz5NatVkhpB3UIhIjYBbgXOycxFrT0uM6/NzCGZOaRfv37VK1CSGlBdQiEiulIJhJ9l5m3F6nkR0b/Y3h94uR61SVIjq8e3jwL4CTA9My9vtmk8MLJ4PhK4o9a1SVKj61KHcw4FPgH8KSKeLNadD1wKjI2I04DZwIj1aXzZsmU0NTWxZMmSFve97tj+63OKhpEksxYu43uTXmPR0r/VuxxJNVDzUMjMB4FYw+Zh77X9pqYmNt10UwYNGkSlU7Jmy5oWvtfTdWiZyWabLeIsYPQDC+pdjqQa6HC/aF6yZAmbbbZZi4GglkUEXXr0ZGDvrvUuRVKNdLhQAAyEDSgiiDV27CR1NB0yFCRJ66ceF5pratCoX2/Q9safOXSDtlcNR+y/Ozf/+nf06btZvUuR1M7YU2hjli9fXu8SJDWwDt9TqIcX5szmC58cwZ5778eTUx5liy37892f/Iznn5vBxed9iSVvv8WAgdvzzcuupmfv3pw24mj2+OA+PDl5EgcNP4IH7p3ATrvuzrQ/Pclrry7g4it+wE+uuYIZf57GYcd8mDPPvQCAc077GC/NfYGlS5fysU9/jhM/dmp9X7ikds+eQpXMnvksHx35GW6f+Ag9e/Xi3t+M54JzzuCc8y5i3D0PMXinXfjhld8u91+86HWuH/drRn7uTAC6dOvKT2+9ixEf/xTnnPYxzr/4P7n13oe545c/Z+FrrwLwjcuu5pa77ufnd97Hzdf/qFwvSevLnkKVbLPtQHbadTcAdt5tD5pmPc/iRa8zZP/KNYljTzyFr/zLqeX+hx1zwkrHHzz8CAB22GkX3r/jTvTbcisABmw3kJdefIHeffpy809/xH0T7gRg3twXmD3zWXr36VvtlyapAzMUqqRrt27l886dOrP49dfXun/3Hj1WWu7W7X0AdOrUaaW2OnXqxIrly3nskQf544P3c8Mdd9O9ew9OG3E0S5cu3YCvQFIjcvioRjbp2ZOevXrz+KSHAbjztl8wZN/1/ybTG4sW0bNXb7p378HMGX/l6Scmb6hSJTWwDt9TeP7So9a47eka3+biW1f84H8vNG83iG9+55r1bmvowcP45U3Xc+LwoQx6/2B233PIBqxUUqOKzKx3DettyJAhOXnyyp+Qp0+fzs4779yq42sdCu3VvNnP8dnxc+tdhqRm1vaBtyURMSUzV/tJ0uEjSVLJUJAklQwFSVLJUJAklQwFSVLJUJAklTr87xS4qNcaN+2+Hs09/ZlZ63zMDy6/lB49NmbkGWetdvurC17hrFNPZtmydxj1jUvZa98D1qOy9+br//p5Djz0MIYfdVzNzy2p7ej4odAOTHrw92y/w2AuvuIHrT5mxYoVdO7cuYpVSWpEDh9VyXVXXcaxB+3N6accz/PPPgPAnOdn8i8fP5GTjzyYU084gpkz/sqfp/6JKy+5kAfvu4eTDvtnlrz9Nr/51Tg+cugBnDBsf6645MKyzf12HMA1l13Cx445lKemPMp+Ow7giksu5OQjD+b0U47nT09M4bQRR3Pk0A9w/913AZXwuPzir/P/jjqEE4cP5Zc3/RSAzOSSC77Khw/ZjzNHnsSrC+bX/k2S1OYYClUw7eknmTD+Nn4x4fdcfu0NTH3qCQC+OeocRn3r29xy1/186evfYvTXvsJOu+7G5798Pv/3mA8z9rd/YNHrC7nyPy7iul+MZ+xv/8DUp57gvgmV2ePefutNdthxZ3723/ey1z778/Zbb7L3/v/ELXfdT4+NN+Hq/xzND2++nSuuu5Hvf+c/ALj9lhvZZNNe3Pzr+7j5zvu47eYbaJo9i4kT7mTWczMYd89D/Pu3v8tTUx6t2/slqe1w+KgKHn/0EQ45/Gi6d6/c+fSg4UewdOlSnpr8KF8949Ryv3feeefvjp361BMM2f+f6LvZ5gAc+eERTJn0MIccfhSdO3fm0COPLfft2q0bQw8+FIDBO+1Ct27d6Nq1K4N32pUXm2YD8MgDv+Ov06dy7113ALB48SJmz3yWxyc9zOHHfoTOnTuzxVb92fuAA6vyXkhqXwyFKomIlZb/ln9j0169GPvbP6z1uLXdi6rb+zZa6TpCly5dy/N06tRppdttL1++omxv1De/zdCDh63U1oO/u+fvapQkh4+q4IP7HsB9E+5kydtv8+Ybi3ng3gl036g722y7HXff+Sug8sf6L9P+9HfH7rbnB5nyx4d47dUFrFixggl33MqQ/db/FtsHHHQIv7zxepYtWwbA88/N4K233mSvfQ9gwvjbWLFiBfPnvcRjj6w9rCQ1ho7fU7hozZPbVOsuqTvvtgeHHfNhTjr8QPpvsy177rM/AJdcdR2jz/8y1111GcuXL+ewY09gx112W+nYfltuxdn/9u985qRjyEz++ZDhfOiwI9e7lhNO+SQvzpnNyUccRGbSZ7PNufLHNzHs8KN59KEHOHH4UAZu//73NLeDpI7DW2erRd46W2p7vHW2JKnqDAVJUqlDhkJ7HhJrazKTxPdTahQdLhQ22mgjFixYYDBsAJnJ8rcWMWvhsnqXIqlGOty3jwYMGEBTUxPz57d824Z5r71dg4rarySZtXAZ35v0Wr1LkVQjHS4Uunbtyvbbb9+qfY8Y9esqVyNJ7UubGz6KiMMj4i8RMSMiRtW7HklqJG0qFCKiM3ANcASwC3BKROxS36okqXG0qVAA9gFmZOZzmfkOcAvgrC+SVCNt7ZrCNsCcZstNwL7Nd4iI04HTi8U3IuIvNapNWlebA6/Uuwh1TPHt93T4wDVtaGuhsLrbdq703dLMvBa4tjblSOsvIiav6VYCUlvV1oaPmoBtmy0PAF6sUy2S1HDaWig8BgyOiO0johtwMjC+zjVJUsNoU8NHmbk8Is4Efgt0Bq7PzKl1LktaXw5zqt1p17fOliRtWG1t+EiSVEeGgiSpZChIVRIRp0bE1cXziyLiK/WuSWqJoSBJKhkK0jqKiE9GxNMR8VRE3BgR/SLi1oh4rPg3tIXjz46IaUUbt9Sqbqk12tRXUqW2LiJ2Bb4GDM3MVyKiL3A1cEVmPhgR21H5SvXOa2lmFLB9Zi6NiN5VL1paB4aCtG4OAcZl5isAmflqRBwK7BJR3qWlZ0RsupY2ngZ+FhG/An5VxVqldWYoSOsm4O8mre4E7J+ZK03l1ywkVnUUcCBwLPD1iNg1M5dv6EKl9eE1BWndTAROiojNAIrho7uBM9/dISI+sKaDI6ITsG1m/g44F+gNbFLFeqV1Yk9BWgeZOTUiRgO/j4gVwBPA2cA1EfE0lf9TDwBnrKGJzsBNEdGLSq/jisxcWP3KpdbxNheSpJLDR5KkkqEgSSoZCpKkkqEgSSoZCpKkkqEgSSoZCpKk0v8Hsz5oEXs4ZpYAAAAASUVORK5CYII=\n",
193193
"text/plain": [
194194
"<Figure size 432x288 with 1 Axes>"
195195
]
@@ -243,25 +243,26 @@
243243
"metadata": {},
244244
"source": [
245245
"The confidence intervals we are calculating are confidence intervals of a proportion, this means that they are going back to \"binomial variables\", which are represented as a proportion. There are several ways to calculate these intervals, the \"exact method\", the \"standard Wald method\", the \"modified Wald method\". \n",
246-
"The details are probably never to become relevant for you, so we will take the default standard implementation in python, the \"asymptotic normal approximation\". For this we need the measured proportion (a) and the total number (n). It will give us a lower and an upper interval. "
246+
"The details are probably never to become relevant for you, so we will take the default standard implementation in python, the \"asymptotic normal approximation\". For this we need the measured proportion (a) and the total number (n). It will give us a lower and an upper interval. \n",
247+
"alpha is 1 - the confidence level. It will be set by default to 0.05, so a 95% confidence level will be assumed, if not specified explicitely. (this was a problem in my original script, because I had accidentally deleted the specification of alpha... sorry!) "
247248
]
248249
},
249250
{
250251
"cell_type": "code",
251-
"execution_count": 41,
252+
"execution_count": 11,
252253
"id": "d757af70",
253254
"metadata": {},
254255
"outputs": [
255256
{
256257
"name": "stdout",
257258
"output_type": "stream",
258259
"text": [
259-
"(0.04120108046379837, 0.15879891953620165)\n"
260+
"(0.050654391191455816, 0.1493456088085442)\n"
260261
]
261262
}
262263
],
263264
"source": [
264-
"CI= sm.stats.proportion_confint(a, n)\n",
265+
"CI= sm.stats.proportion_confint(a, n, alpha=1-confidence_level)\n",
265266
"print(CI)"
266267
]
267268
},
@@ -426,7 +427,7 @@
426427
"name": "python",
427428
"nbconvert_exporter": "python",
428429
"pygments_lexer": "ipython3",
429-
"version": "3.8.10"
430+
"version": "3.9.5"
430431
}
431432
},
432433
"nbformat": 4,

0 commit comments

Comments
 (0)