diff --git a/cli/batch-score.sh b/cli/batch-score.sh index 8d7e36c961..ff25f9119f 100644 --- a/cli/batch-score.sh +++ b/cli/batch-score.sh @@ -39,7 +39,7 @@ sleep 60 echo "Invoking batch endpoint with public URI (MNIST)" # -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremldata2.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) # echo "Showing job detail" @@ -71,13 +71,13 @@ fi echo "Invoke batch endpoint with specific output file name" # export OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --output-path azureml://datastores/workspaceblobstore/paths/$ENDPOINT_NAME --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremldata2.blob.core.windows.net/data/mnist/sample --input-type uri_folder --output-path azureml://datastores/workspaceblobstore/paths/$ENDPOINT_NAME --set output_file_name=$OUTPUT_FILE_NAME --query name -o tsv) # echo "Invoke batch endpoint with specific overwrites" # export OUTPUT_FILE_NAME=predictions_`echo $RANDOM`.csv -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --mini-batch-size 20 --instance-count 5 --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremldata2.blob.core.windows.net/data/mnist/sample --input-type uri_folder --mini-batch-size 20 --instance-count 5 --query name -o tsv) # echo "Stream job detail" @@ -114,7 +114,7 @@ az ml batch-deployment create --file endpoints/batch/deploy-models/mnist-classif echo "Invoke batch endpoint with public data" # DEPLOYMENT_NAME="mnist-keras-dpl" -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --deployment-name $DEPLOYMENT_NAME --input https://azuremldata2.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) # echo "Show job detail" @@ -155,7 +155,7 @@ az ml batch-endpoint show --name $ENDPOINT_NAME --query "{Name:name, Defaults:de echo "Invoke batch endpoint with the new default deployment with public URI" # -JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremlexampledata.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) +JOB_NAME=$(az ml batch-endpoint invoke --name $ENDPOINT_NAME --input https://azuremldata2.blob.core.windows.net/data/mnist/sample --input-type uri_folder --query name -o tsv) # echo "Stream job logs to console" @@ -198,7 +198,7 @@ RESPONSE=$(curl --location --request POST "$SCORING_URI" \ \"properties\": { \"dataset\": { \"dataInputType\": \"DataUrl\", - \"Path\": \"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample\" + \"Path\": \"https://azuremldata2.blob.core.windows.net/data/mnist/sample\" } } }") diff --git a/sdk/python/endpoints/batch/deploy-models/custom-outputs-parquet/custom-output-batch.ipynb b/sdk/python/endpoints/batch/deploy-models/custom-outputs-parquet/custom-output-batch.ipynb index 60b47d7c4d..99cb1e3c26 100644 --- a/sdk/python/endpoints/batch/deploy-models/custom-outputs-parquet/custom-output-batch.ipynb +++ b/sdk/python/endpoints/batch/deploy-models/custom-outputs-parquet/custom-output-batch.ipynb @@ -29,7 +29,8 @@ "* `lightgbm==1.5.2`\n", "* `numpy`\n", "* `pandas`\n", - "* `pyarrow`" + "* `pyarrow`\n", + "* `azure`" ] }, { @@ -477,7 +478,7 @@ "environment = Environment(\n", " name=\"batch-mlflow-xgboost\",\n", " conda_file=\"environment/conda.yaml\",\n", - " image=\"mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest\",\n", + " image=\"mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest\",\n", ")" ] }, @@ -636,7 +637,7 @@ "source": [ "input = Input(\n", " type=AssetTypes.URI_FOLDER,\n", - " path=\"https://azuremlexampledata.blob.core.windows.net/data/heart-disease-uci/data\",\n", + " path=\"https://azuremldata2.blob.core.windows.net/data/heart-disease-uci/data\",\n", ")" ] }, diff --git a/sdk/python/endpoints/batch/deploy-models/mnist-classifier/mnist-batch.ipynb b/sdk/python/endpoints/batch/deploy-models/mnist-classifier/mnist-batch.ipynb index 85bd5d680f..24d3ced823 100644 --- a/sdk/python/endpoints/batch/deploy-models/mnist-classifier/mnist-batch.ipynb +++ b/sdk/python/endpoints/batch/deploy-models/mnist-classifier/mnist-batch.ipynb @@ -406,7 +406,7 @@ "env = Environment(\n", " name=\"batch-torch-py38\",\n", " conda_file=\"deployment-torch/environment/conda.yaml\",\n", - " image=\"mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest\",\n", + " image=\"mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest\",\n", ")" ] }, @@ -576,7 +576,7 @@ " endpoint_name=endpoint_name,\n", " deployment_name=deployment.name,\n", " input=Input(\n", - " path=\"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/\",\n", + " path=\"https://azuremldata2.blob.core.windows.net/data/mnist/sample/\",\n", " type=AssetTypes.URI_FOLDER,\n", " ),\n", ")" @@ -770,7 +770,7 @@ "job = ml_client.batch_endpoints.invoke(\n", " endpoint_name=endpoint_name,\n", " input=Input(\n", - " path=\"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/\",\n", + " path=\"https://azuremldata2.blob.core.windows.net/data/mnist/sample/\",\n", " type=AssetTypes.URI_FOLDER,\n", " ),\n", " params_override=[\n", @@ -801,9 +801,7 @@ "source": [ "job = ml_client.batch_endpoints.invoke(\n", " endpoint_name=endpoint_name,\n", - " input=Input(\n", - " path=\"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/\"\n", - " ),\n", + " input=Input(path=\"https://azuremldata2.blob.core.windows.net/data/mnist/sample/\"),\n", " params_override=[{\"mini_batch_size\": \"20\"}, {\"compute.instance_count\": \"5\"}],\n", ")" ] @@ -1082,7 +1080,7 @@ " endpoint_name=endpoint_name,\n", " deployment_name=deployment_keras.name,\n", " input=Input(\n", - " path=\"https://azuremlexampledata.blob.core.windows.net/data/mnist/sample/\",\n", + " path=\"https://azuremldata2.blob.core.windows.net/data/mnist/sample/\",\n", " type=AssetTypes.URI_FOLDER,\n", " ),\n", ")"