|
6 | 6 |
|
7 | 7 |
|
8 | 8 | class LRPlayer(MemoryOnePlayer): |
9 | | - """Abstraction for Linear Relation players. These players enforce a linear |
10 | | - difference in stationary payoffs s * (S_xy - l) = S_yx - l, with 0 <= l <= R. |
11 | | - The parameter `s` is called the slope and the parameter `l` the |
12 | | - baseline payoff. For extortionate strategies, the extortion factor is the |
13 | | - inverse of the slope. |
14 | | -
|
15 | | - This parameterization is Equation 14 in |
16 | | - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077886. |
17 | | - See Figure 2 of the article for a more in-depth explanation. |
| 9 | + """ |
| 10 | + Abstraction for Linear Relation players. These players enforce a linear |
| 11 | + difference in stationary payoffs :math:`s (S_{xy} - l) = S_{yx} - l.` |
| 12 | +
|
| 13 | + The parameter :math:`s` is called the slope and the parameter :math:`l` the |
| 14 | + baseline payoff. For extortionate strategies, the extortion factor |
| 15 | + :math:`\chi` is the inverse of the slope :math:`s`. |
| 16 | +
|
| 17 | + For the standard prisoner's dilemma where :math:`T > R > P > S` and |
| 18 | + :math:`R > (T + S) / 2 > P`, a pair :math:`(l, s)` is enforceable iff |
| 19 | +
|
| 20 | + .. math:: |
| 21 | + :nowrap: |
| 22 | +
|
| 23 | + \\begin{eqnarray} |
| 24 | + &P &<= l <= R \\\\ |
| 25 | + &s_{min} &= -\min\\left( \\frac{T - l}{l - S}, \\frac{l - S}{T - l}\\right) <= s <= 1 |
| 26 | + \\end{eqnarray} |
| 27 | +
|
| 28 | + And also that there exists :math:`\\phi` such that |
| 29 | +
|
| 30 | + .. math:: |
| 31 | + :nowrap: |
| 32 | +
|
| 33 | + \\begin{eqnarray} |
| 34 | + p1 &= P(C|CC) &= 1 - \\phi (1 - s)(R - l) \\\\ |
| 35 | + p2 &= P(C|CD) &= 1 - \\phi (s(l - S) + (T - l)) \\\\ |
| 36 | + p3 &= P(C|DC) &= \\phi ((l - S) + s(T - l)) \\\\ |
| 37 | + p4 &= P(C|DD) &= \\phi (1 - s)(l - P) |
| 38 | + \\end{eqnarray} |
| 39 | +
|
| 40 | +
|
| 41 | + These conditions also force :math:`\\phi >= 0`. For a given pair :math:`(l, s)` |
| 42 | + there may be multiple such :math:`\\phi`. |
| 43 | +
|
| 44 | + This parameterization is Equation 14 in [Hilbe2013]_. |
| 45 | + See Figure 2 of the article for a more in-depth explanation. Other game |
| 46 | + parameters can alter the relations and bounds above. |
18 | 47 |
|
19 | 48 | Names: |
20 | 49 |
|
|
0 commit comments