@@ -34,8 +34,7 @@ Usual workflow is to first setup AML (see [AML setup](#aml-setup)), source envir
3434note that the example uses PyTorch - we recommend using Ampere Optimized PyTorch for best results (see [ AML setup] ( #aml-setup ) )
3535``` bash
3636source set_env_variables.sh
37- cd computer_vision/classification/resnet_50_v15
38- IGNORE_DATASET_LIMITS=1 AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 run.py -m resnet50 -p fp32 -b 16 -f pytorch
37+ IGNORE_DATASET_LIMITS=1 AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 computer_vision/classification/resnet_50_v15/run.py -m resnet50 -p fp32 -b 16 -f pytorch
3938# ## the command above will run the model utilizing 32 threads, with batch size of 16
4039# ## implicit conversion to FP16 datatype will be applied - you can default to fp32 precision by not setting the AIO_IMPLICIT_FP16_ variable
4140```
@@ -47,8 +46,7 @@ IGNORE_DATASET_LIMITS=1 AIO_IMPLICIT_FP16_TRANSFORM_FILTER=".*" AIO_NUM_THREADS=
4746note that the example uses PyTorch - we recommend using Ampere Optimized PyTorch for best results (see [ AML setup] ( #aml-setup ) )
4847``` bash
4948source set_env_variables.sh
50- cd speech_recognition/whisper/
51- AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 run.py -m tiny.en
49+ AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 speech_recognition/whisper/run.py -m tiny.en
5250# ## the command above will run the model utilizing 32 threads
5351# ## implicit conversion to FP16 datatype will be applied - you can default to fp32 precision by not setting the AIO_IMPLICIT_FP16_ variable
5452```
@@ -58,9 +56,8 @@ AIO_IMPLICIT_FP16_TRANSFORM_FILTER=".*" AIO_NUM_THREADS=32 python3 run.py -m tin
5856note that the example uses PyTorch - we recommend using Ampere Optimized PyTorch for best results (see [ AML setup] ( #aml-setup ) )
5957``` bash
6058source set_env_variables.sh
61- cd computer_vision/object_detection/yolo_v8
6259wget https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt
63- AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 run.py -m yolov8l.pt -p fp32 -f pytorch
60+ AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 computer_vision/object_detection/yolo_v8/ run.py -m yolov8l.pt -p fp32 -f pytorch
6461# ## the command above will run the model utilizing 32 threads
6562# ## implicit conversion to FP16 datatype will be applied - you can default to fp32 precision by not setting the AIO_IMPLICIT_FP16_ variable
6663```
@@ -70,9 +67,8 @@ AIO_IMPLICIT_FP16_TRANSFORM_FILTER=".*" AIO_NUM_THREADS=32 python3 run.py -m yol
7067note that the example uses PyTorch - we recommend using Ampere Optimized PyTorch for best results (see [ AML setup] ( #aml-setup ) )
7168``` bash
7269source set_env_variables.sh
73- cd natural_language_processing/extractive_question_answering/bert_large
7470wget -O bert_large_mlperf.pt https://zenodo.org/records/3733896/files/model.pytorch? download=1
75- AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 run_mlperf.py -m bert_large_mlperf.pt -p fp32 -f pytorch
71+ AIO_IMPLICIT_FP16_TRANSFORM_FILTER=" .*" AIO_NUM_THREADS=32 python3 natural_language_processing/extractive_question_answering/bert_large/ run_mlperf.py -m bert_large_mlperf.pt -p fp32 -f pytorch
7672# ## the command above will run the model utilizing 32 threads
7773# ## implicit conversion to FP16 datatype will be applied - you can default to fp32 precision by not setting the AIO_IMPLICIT_FP16_ variable
7874```
0 commit comments