|
30 | 30 |
|
31 | 31 | ## IMPORTS #################################################################### |
32 | 32 |
|
33 | | -import qinfer.rb as rb |
34 | | -import qinfer.distributions as dist |
| 33 | +from functools import partial |
35 | 34 |
|
36 | 35 | import numpy as np |
37 | 36 | import random as rnd |
38 | 37 |
|
39 | | -from functools import partial |
| 38 | +import qinfer.rb as rb |
| 39 | +import qinfer.distributions as dist |
| 40 | + |
| 41 | +from qinfer.tests.base_test import DerandomizedTestCase |
40 | 42 |
|
41 | 43 | ## CLASSES #################################################################### |
42 | 44 |
|
43 | 45 | class TestPSO(DerandomizedTestCase): |
44 | 46 |
|
45 | | - def test_pso_quad(self): |
46 | | - f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
47 | | - hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_quad) |
48 | | - hh_opt() |
49 | | - |
50 | | - def test_pso_sin_sq(self): |
51 | | - f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
52 | | - hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
53 | | - hh_opt() |
54 | | - |
55 | | - def test_pso_rosenbrock(self): |
56 | | - f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
57 | | - hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
58 | | - hh_opt() |
59 | | - |
60 | | - |
61 | | - def test_pso_perf_test_multiple_short(self): |
62 | | - # Define our experiment |
63 | | - n_trials = 20 # Times we repeat the set of experiments |
64 | | - n_exp = 100 # Number of experiments in the set |
65 | | - n_particles = 4000 # Number of points we track during the experiment |
66 | | - |
67 | | - # Model for the experiment |
68 | | - model = rb.RandomizedBenchmarkingModel() |
69 | | - |
70 | | - #Ordering of RB is 'p', 'A', 'B' |
71 | | - # A + B < 1, 0 < p < 1 |
72 | | - #Prior distribution of the experiment |
73 | | - prior = dist.PostselectedDistribution( |
74 | | - dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
75 | | - model |
76 | | - ) |
77 | | - |
78 | | - #Heuristic used in the experiment |
79 | | - heuristic_class = qi.expdesign.ExpSparseHeuristic |
80 | | - |
81 | | - #Heuristic Parameters |
82 | | - params = ['base', 'scale'] |
83 | | - |
84 | | - #Fitness function to evaluate the performance of the experiment |
85 | | - EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
86 | | - |
87 | | - hh_opt = ParticleSwarmOptimizer(params, |
88 | | - n_trials = n_trials, |
89 | | - n_particles = n_particles, |
90 | | - prior = prior, |
91 | | - model = model, |
92 | | - n_exp = n_exp, |
93 | | - heuristic_class = heuristic_class |
94 | | - ) |
95 | | - hh_opt(n_pso_iterations=5, |
96 | | - n_pso_particles=6) |
| 47 | + def test_pso_quad(self): |
| 48 | + f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
| 49 | + hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_quad) |
| 50 | + hh_opt() |
| 51 | + |
| 52 | + def test_pso_sin_sq(self): |
| 53 | + f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
| 54 | + hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
| 55 | + hh_opt() |
| 56 | + |
| 57 | + def test_pso_rosenbrock(self): |
| 58 | + f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
| 59 | + hh_opt = ParticleSwarmOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
| 60 | + hh_opt() |
| 61 | + |
| 62 | + |
| 63 | + def test_pso_perf_test_multiple_short(self): |
| 64 | + # Define our experiment |
| 65 | + n_trials = 20 # Times we repeat the set of experiments |
| 66 | + n_exp = 100 # Number of experiments in the set |
| 67 | + n_particles = 4000 # Number of points we track during the experiment |
| 68 | + |
| 69 | + # Model for the experiment |
| 70 | + model = rb.RandomizedBenchmarkingModel() |
| 71 | + |
| 72 | + #Ordering of RB is 'p', 'A', 'B' |
| 73 | + # A + B < 1, 0 < p < 1 |
| 74 | + #Prior distribution of the experiment |
| 75 | + prior = dist.PostselectedDistribution( |
| 76 | + dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
| 77 | + model |
| 78 | + ) |
| 79 | + |
| 80 | + #Heuristic used in the experiment |
| 81 | + heuristic_class = qi.expdesign.ExpSparseHeuristic |
| 82 | + |
| 83 | + #Heuristic Parameters |
| 84 | + params = ['base', 'scale'] |
| 85 | + |
| 86 | + #Fitness function to evaluate the performance of the experiment |
| 87 | + EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
| 88 | + |
| 89 | + hh_opt = ParticleSwarmOptimizer(params, |
| 90 | + n_trials = n_trials, |
| 91 | + n_particles = n_particles, |
| 92 | + prior = prior, |
| 93 | + model = model, |
| 94 | + n_exp = n_exp, |
| 95 | + heuristic_class = heuristic_class |
| 96 | + ) |
| 97 | + hh_opt(n_pso_iterations=5, |
| 98 | + n_pso_particles=6) |
97 | 99 |
|
98 | 100 | def TestPSSAO(DerandomizedTestCase): |
99 | 101 |
|
100 | | - def test_pssao_quad(self): |
101 | | - f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
102 | | - hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_quad) |
103 | | - hh_opt() |
| 102 | + def test_pssao_quad(self): |
| 103 | + f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
| 104 | + hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_quad) |
| 105 | + hh_opt() |
104 | 106 |
|
105 | | - def test_pssao_sin_sq(self): |
106 | | - f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
107 | | - hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
108 | | - hh_opt() |
| 107 | + def test_pssao_sin_sq(self): |
| 108 | + f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
| 109 | + hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
| 110 | + hh_opt() |
109 | 111 |
|
110 | | - def test_pssao_rosenbrock(self): |
111 | | - f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
112 | | - hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
113 | | - hh_opt() |
| 112 | + def test_pssao_rosenbrock(self): |
| 113 | + f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
| 114 | + hh_opt = ParticleSwarmSimpleAnnealingOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
| 115 | + hh_opt() |
114 | 116 |
|
115 | 117 |
|
116 | | - def test_pssao_perf_test_multiple_short(self): |
117 | | - # Define our experiment |
118 | | - n_trials = 20 # Times we repeat the set of experiments |
119 | | - n_exp = 150 # Number of experiments in the set |
120 | | - n_particles = 4000 # Number of points we track during the experiment |
| 118 | + def test_pssao_perf_test_multiple_short(self): |
| 119 | + # Define our experiment |
| 120 | + n_trials = 20 # Times we repeat the set of experiments |
| 121 | + n_exp = 150 # Number of experiments in the set |
| 122 | + n_particles = 4000 # Number of points we track during the experiment |
121 | 123 |
|
122 | | - # Model for the experiment |
123 | | - model = rb.RandomizedBenchmarkingModel() |
| 124 | + # Model for the experiment |
| 125 | + model = rb.RandomizedBenchmarkingModel() |
124 | 126 |
|
125 | | - #Ordering of RB is 'p', 'A', 'B' |
126 | | - # A + B < 1, 0 < p < 1 |
127 | | - #Prior distribution of the experiment |
128 | | - prior = dist.PostselectedDistribution( |
129 | | - dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
130 | | - model |
131 | | - ) |
| 127 | + #Ordering of RB is 'p', 'A', 'B' |
| 128 | + # A + B < 1, 0 < p < 1 |
| 129 | + #Prior distribution of the experiment |
| 130 | + prior = dist.PostselectedDistribution( |
| 131 | + dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
| 132 | + model |
| 133 | + ) |
132 | 134 |
|
133 | | - #Heuristic used in the experiment |
134 | | - heuristic_class = qi.expdesign.ExpSparseHeuristic |
| 135 | + #Heuristic used in the experiment |
| 136 | + heuristic_class = qi.expdesign.ExpSparseHeuristic |
135 | 137 |
|
136 | | - #Heuristic Parameters |
137 | | - params = ['base', 'scale'] |
| 138 | + #Heuristic Parameters |
| 139 | + params = ['base', 'scale'] |
138 | 140 |
|
139 | | - #Fitness function to evaluate the performance of the experiment |
140 | | - EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
| 141 | + #Fitness function to evaluate the performance of the experiment |
| 142 | + EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
141 | 143 |
|
142 | | - hh_opt = ParticleSwarmSimpleAnnealingOptimizer(params, |
143 | | - n_trials = n_trials, |
144 | | - n_particles = n_particles, |
145 | | - prior = prior, |
146 | | - model = model, |
147 | | - n_exp = n_exp, |
148 | | - heuristic_class = heuristic_class |
149 | | - ) |
150 | | - hh_opt(n_pso_iterations=5, |
151 | | - n_pso_particles=6) |
| 144 | + hh_opt = ParticleSwarmSimpleAnnealingOptimizer(params, |
| 145 | + n_trials = n_trials, |
| 146 | + n_particles = n_particles, |
| 147 | + prior = prior, |
| 148 | + model = model, |
| 149 | + n_exp = n_exp, |
| 150 | + heuristic_class = heuristic_class |
| 151 | + ) |
| 152 | + hh_opt(n_pso_iterations=5, |
| 153 | + n_pso_particles=6) |
152 | 154 |
|
153 | 155 |
|
154 | 156 | def TestPSTO(DerandomizedTestCase): |
155 | 157 |
|
156 | | - def test_psto_quad(self): |
157 | | - f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
158 | | - hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_quad) |
159 | | - hh_opt() |
160 | | - |
161 | | - def test_psto_sin_sq(self): |
162 | | - f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
163 | | - hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
164 | | - hh_opt() |
165 | | - |
166 | | - def test_psto_rosenbrock(self): |
167 | | - f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
168 | | - hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
169 | | - hh_opt() |
170 | | - |
171 | | - |
172 | | - def test_psto_perf_test_multiple_short(self): |
173 | | - # Define our experiment |
174 | | - n_trials = 20 # Times we repeat the set of experiments |
175 | | - n_exp = 150 # Number of experiments in the set |
176 | | - n_particles = 4000 # Number of points we track during the experiment |
177 | | - |
178 | | - # Model for the experiment |
179 | | - model = rb.RandomizedBenchmarkingModel() |
180 | | - |
181 | | - #Ordering of RB is 'p', 'A', 'B' |
182 | | - # A + B < 1, 0 < p < 1 |
183 | | - #Prior distribution of the experiment |
184 | | - prior = dist.PostselectedDistribution( |
185 | | - dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
186 | | - model |
187 | | - ) |
188 | | - |
189 | | - #Heuristic used in the experiment |
190 | | - heuristic_class = qi.expdesign.ExpSparseHeuristic |
191 | | - |
192 | | - #Heuristic Parameters |
193 | | - params = ['base', 'scale'] |
194 | | - |
195 | | - #Fitness function to evaluate the performance of the experiment |
196 | | - EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
197 | | - |
198 | | - hh_opt = ParticleSwarmTemperingOptimizer(params, |
199 | | - n_trials = n_trials, |
200 | | - n_particles = n_particles, |
201 | | - prior = prior, |
202 | | - model = model, |
203 | | - n_exp = n_exp, |
204 | | - heuristic_class = heuristic_class |
205 | | - ) |
206 | | - hh_opt(n_pso_iterations=5, |
207 | | - n_pso_particles=6) |
| 158 | + def test_psto_quad(self): |
| 159 | + f_quad = lambda x: numpy.sum(10 * (x-0.5)**2) |
| 160 | + hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_quad) |
| 161 | + hh_opt() |
| 162 | + |
| 163 | + def test_psto_sin_sq(self): |
| 164 | + f_sin_sq = lambda x: numpy.sum(np.sin(x - 0.2)**2) |
| 165 | + hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_sin_sq) |
| 166 | + hh_opt() |
| 167 | + |
| 168 | + def test_psto_rosenbrock(self): |
| 169 | + f_rosenbrock = lambda x: numpy.sum([((x[i+1] - x[i]**2)**2 + (1 - x[i])**2)/len(x) for i in range(len(x)-1)]) |
| 170 | + hh_opt = ParticleSwarmTemperingOptimizer(['x','y','z','a'], fitness_function = f_rosenbrock) |
| 171 | + hh_opt() |
| 172 | + |
| 173 | + |
| 174 | + def test_psto_perf_test_multiple_short(self): |
| 175 | + # Define our experiment |
| 176 | + n_trials = 20 # Times we repeat the set of experiments |
| 177 | + n_exp = 150 # Number of experiments in the set |
| 178 | + n_particles = 4000 # Number of points we track during the experiment |
| 179 | + |
| 180 | + # Model for the experiment |
| 181 | + model = rb.RandomizedBenchmarkingModel() |
| 182 | + |
| 183 | + #Ordering of RB is 'p', 'A', 'B' |
| 184 | + # A + B < 1, 0 < p < 1 |
| 185 | + #Prior distribution of the experiment |
| 186 | + prior = dist.PostselectedDistribution( |
| 187 | + dist.MultivariateNormalDistribution(mean=[0.5,0.1,0.25], cov=np.diag([0.1, 0.1, 0.1])), |
| 188 | + model |
| 189 | + ) |
| 190 | + |
| 191 | + #Heuristic used in the experiment |
| 192 | + heuristic_class = qi.expdesign.ExpSparseHeuristic |
| 193 | + |
| 194 | + #Heuristic Parameters |
| 195 | + params = ['base', 'scale'] |
| 196 | + |
| 197 | + #Fitness function to evaluate the performance of the experiment |
| 198 | + EXPERIMENT_FITNESS = lambda performance: performance['loss'][:,-1].mean(axis=0) |
| 199 | + |
| 200 | + hh_opt = ParticleSwarmTemperingOptimizer(params, |
| 201 | + n_trials = n_trials, |
| 202 | + n_particles = n_particles, |
| 203 | + prior = prior, |
| 204 | + model = model, |
| 205 | + n_exp = n_exp, |
| 206 | + heuristic_class = heuristic_class |
| 207 | + ) |
| 208 | + hh_opt(n_pso_iterations=5, |
| 209 | + n_pso_particles=6) |
0 commit comments