3535import numpy as np
3636import random as rnd
3737
38+ from qinfer .tests .base_test import DerandomizedTestCase
39+
3840import qinfer .rb as rb
3941import qinfer .distributions as dist
4042
41- from qinfer .tests .base_test import DerandomizedTestCase
43+ from qinfer .hyper_heuristic_optimisers import ParticleSwarmOptimizer
44+ from qinfer .expdesign import ExpSparseHeuristic
4245
4346## CLASSES ####################################################################
4447
4548class TestPSO (DerandomizedTestCase ):
4649
4750 def test_pso_quad (self ):
48- f_quad = lambda x : numpy .sum (10 * (x - 0.5 ) ** 2 )
51+ f_quad = lambda x : np .sum (10 * (x - 0.5 ) ** 2 )
4952 hh_opt = ParticleSwarmOptimizer (['x' , 'y' , 'z' , 'a' ], fitness_function = f_quad )
5053 hh_opt ()
5154
5255 def test_pso_sin_sq (self ):
53- f_sin_sq = lambda x : numpy .sum (np .sin (x - 0.2 ) ** 2 )
56+ f_sin_sq = lambda x : np .sum (np .sin (x - 0.2 ) ** 2 )
5457 hh_opt = ParticleSwarmOptimizer (['x' , 'y' , 'z' , 'a' ], fitness_function = f_sin_sq )
5558 hh_opt ()
5659
5760 def test_pso_rosenbrock (self ):
58- f_rosenbrock = lambda x : numpy .sum ([
61+ f_rosenbrock = lambda x : np .sum ([
5962 ((x [i + 1 ] - x [i ] ** 2 ) ** 2 + (1 - x [i ])** 2 ) / len (x )
6063 for i in range (len (x ) - 1 )
6164 ])
@@ -81,14 +84,12 @@ def test_pso_perf_test_multiple_short(self):
8184 )
8285
8386 #Heuristic used in the experiment
84- heuristic_class = qi . expdesign . ExpSparseHeuristic
87+ heuristic_class = ExpSparseHeuristic
8588
8689 #Heuristic Parameters
8790 params = ['base' , 'scale' ]
8891
8992 #Fitness function to evaluate the performance of the experiment
90- EXPERIMENT_FITNESS = lambda performance : performance ['loss' ][:,- 1 ].mean (axis = 0 )
91-
9293 hh_opt = ParticleSwarmOptimizer (params ,
9394 n_trials = n_trials ,
9495 n_particles = n_particles ,
0 commit comments