@@ -424,8 +424,8 @@ The statistical formula for our varying-intercepts logistic regression model fol
424424
425425\begin{align* }
426426\text{admit}_ i & \sim \text{Binomial} (n_i, p_i) \\
427- \text{logit} (p_i) & = \alpha_ {\text{dept \_ id }_ i} + \beta \text{male}_ i \\
428- \alpha_ \text{dept \_ id } & \sim \text{Normal} (\alpha, \sigma) \\
427+ \text{logit} (p_i) & = \alpha_ {\text{dept_id }_ i} + \beta \text{male}_ i \\
428+ \alpha_ \text{dept_id } & \sim \text{Normal} (\alpha, \sigma) \\
429429\alpha & \sim \text{Normal} (0, 10) \\
430430\beta & \sim \text{Normal} (0, 1) \\
431431\sigma & \sim \text{HalfCauchy} (0, 2) \\
@@ -526,8 +526,8 @@ Now we're ready to allow our `male` dummy to varies, too, the statistical model
526526
527527\begin{align* }
528528\text{admit}_ i & \sim \text{Binomial} (n_i, p_i) \\
529- \text{logit} (p_i) & = \alpha_ {\text{dept \_ id }_ i} + \beta_ {\text{dept \_ id }_ i} \text{male}_ i \\
530- \begin{bmatrix} \alpha_ \text{dept \_ id } \\ \beta_ \text{dept \_ id } \end{bmatrix} & \sim \text{MVNormal} \bigg (\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \bigg ) \\
529+ \text{logit} (p_i) & = \alpha_ {\text{dept_id }_ i} + \beta_ {\text{dept_id }_ i} \text{male}_ i \\
530+ \begin{bmatrix} \alpha_ \text{dept_id } \\ \beta_ \text{dept_id } \end{bmatrix} & \sim \text{MVNormal} \bigg (\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \bigg ) \\
531531\mathbf S & = \begin{pmatrix} \sigma_ \alpha & 0 \\ 0 & \sigma_ \beta \end{pmatrix} \mathbf R \begin{pmatrix} \sigma_ \alpha & 0 \\ 0 & \sigma_ \beta \end{pmatrix} \\
532532\alpha & \sim \text{Normal} (0, 10) \\
533533\beta & \sim \text{Normal} (0, 1) \\
@@ -776,24 +776,24 @@ d <-
776776My math's aren't the best. But if I'm following along correctly, here's a fuller statistical expression of our cross-classified model.
777777
778778\begin{align* }
779- \text{pulled \_ left }_ i & \sim \text{Binomial} (n = 1, p_i) \\
780- \text{logit} (p_i) & = \alpha_i + (\beta_ {1i} + \beta_ {2i} \text{condition}_ i) \text{prosoc \_ left }_ i \\
781- \alpha_i & = \alpha + \alpha_ {\text{actor}_ i} + \alpha_ {\text{block \_ id }_ i} \\
782- \beta_ {1i} & = \beta_1 + \beta_ {1, \text{actor}_ i} + \beta_ {1, \text{block \_ id }_ i} \\
783- \beta_ {2i} & = \beta_2 + \beta_ {2, \text{actor}_ i} + \beta_ {2, \text{block \_ id }_ i} \\
779+ \text{pulled_left }_ i & \sim \text{Binomial} (n = 1, p_i) \\
780+ \text{logit} (p_i) & = \alpha_i + (\beta_ {1i} + \beta_ {2i} \text{condition}_ i) \text{prosoc_left }_ i \\
781+ \alpha_i & = \alpha + \alpha_ {\text{actor}_ i} + \alpha_ {\text{block_id }_ i} \\
782+ \beta_ {1i} & = \beta_1 + \beta_ {1, \text{actor}_ i} + \beta_ {1, \text{block_id }_ i} \\
783+ \beta_ {2i} & = \beta_2 + \beta_ {2, \text{actor}_ i} + \beta_ {2, \text{block_id }_ i} \\
784784\begin{bmatrix} \alpha_ \text{actor} \\ \beta_ {1, \text{actor}} \\ \beta_ {2, \text{actor}} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_ \text{actor} \end{pmatrix} \\
785- \begin{bmatrix} \alpha_ \text{block \_ id } \\ \beta_ {1, \text{block \_ id }} \\ \beta_ {2, \text{block \_ id }} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_ \text{block \_ id } \end{pmatrix} \\
785+ \begin{bmatrix} \alpha_ \text{block_id } \\ \beta_ {1, \text{block_id }} \\ \beta_ {2, \text{block_id }} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_ \text{block_id } \end{pmatrix} \\
786786\mathbf S_ \text{actor} & = \begin{pmatrix} \sigma_ {\alpha_ \text{actor}} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{actor}}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{actor}}} \end{pmatrix}
787787\mathbf R_ \text{actor} \begin{pmatrix} \sigma_ {\alpha_ \text{actor}} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{actor}}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{actor}}} \end{pmatrix} \\
788- \mathbf S_ \text{block \_ id} & = \begin{pmatrix} \sigma_ {\alpha_ \text{block \_ id }} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{block \_ id }}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{block \_ id }}} \end{pmatrix}
789- \mathbf R_ \text{block \_ id } \begin{pmatrix} \sigma_ {\alpha_ \text{block \_ id }} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{block \_ id }}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{block \_ id }}} \end{pmatrix} \\
788+ \mathbf S_ \text{block_id} & = \begin{pmatrix} \sigma_ {\alpha_ \text{block_id }} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{block_id }}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{block_id }}} \end{pmatrix}
789+ \mathbf R_ \text{block_id } \begin{pmatrix} \sigma_ {\alpha_ \text{block_id }} & 0 & 0 \\ 0 & \sigma_ {\beta_ {1_ \text{block_id }}} & 0 \\ 0 & 0 & \sigma_ {\beta_ {2_ \text{block_id }}} \end{pmatrix} \\
790790\alpha & \sim \text{Normal} (0, 1) \\
791791\beta_1 & \sim \text{Normal} (0, 1) \\
792792\beta_2 & \sim \text{Normal} (0, 1) \\
793793(\sigma_ {\alpha_ \text{actor}}, \sigma_ {\beta_ {1_ \text{actor}}}, \sigma_ {\beta_ {2_ \text{actor}}}) & \sim \text{HalfCauchy} (0, 2) \\
794- (\sigma_ {\alpha_ \text{block \_ id }}, \sigma_ {\beta_ {1_ \text{block \_ id }}}, \sigma_ {\beta_ {2_ \text{block \_ id }}}) & \sim \text{HalfCauchy} (0, 2) \\
794+ (\sigma_ {\alpha_ \text{block_id }}, \sigma_ {\beta_ {1_ \text{block_id }}}, \sigma_ {\beta_ {2_ \text{block_id }}}) & \sim \text{HalfCauchy} (0, 2) \\
795795\mathbf R_ \text{actor} & \sim \text{LKJcorr} (4) \\
796- \mathbf R_ \text{block \_ id} & \sim \text{LKJcorr} (4)
796+ \mathbf R_ \text{block_id} & \sim \text{LKJcorr} (4)
797797\end{align* }
798798
799799And now each $\mathbf R$ is a $3 \times 3$ correlation matrix.
0 commit comments