Skip to content

Commit bb0dd58

Browse files
author
ASKurz
committed
13 bookdown version 1.0.4--better \text{} solution
1 parent 9b4b112 commit bb0dd58

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

13.Rmd

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -424,8 +424,8 @@ The statistical formula for our varying-intercepts logistic regression model fol
424424

425425
\begin{align*}
426426
\text{admit}_i & \sim \text{Binomial} (n_i, p_i) \\
427-
\text{logit} (p_i) & = \alpha_{\text{dept\_id}_i} + \beta \text{male}_i \\
428-
\alpha_\text{dept\_id} & \sim \text{Normal} (\alpha, \sigma) \\
427+
\text{logit} (p_i) & = \alpha_{\text{dept_id}_i} + \beta \text{male}_i \\
428+
\alpha_\text{dept_id} & \sim \text{Normal} (\alpha, \sigma) \\
429429
\alpha & \sim \text{Normal} (0, 10) \\
430430
\beta & \sim \text{Normal} (0, 1) \\
431431
\sigma & \sim \text{HalfCauchy} (0, 2) \\
@@ -526,8 +526,8 @@ Now we're ready to allow our `male` dummy to varies, too, the statistical model
526526

527527
\begin{align*}
528528
\text{admit}_i & \sim \text{Binomial} (n_i, p_i) \\
529-
\text{logit} (p_i) & = \alpha_{\text{dept\_id}_i} + \beta_{\text{dept\_id}_i} \text{male}_i \\
530-
\begin{bmatrix} \alpha_\text{dept\_id} \\ \beta_\text{dept\_id} \end{bmatrix} & \sim \text{MVNormal} \bigg (\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \bigg ) \\
529+
\text{logit} (p_i) & = \alpha_{\text{dept_id}_i} + \beta_{\text{dept_id}_i} \text{male}_i \\
530+
\begin{bmatrix} \alpha_\text{dept_id} \\ \beta_\text{dept_id} \end{bmatrix} & \sim \text{MVNormal} \bigg (\begin{bmatrix} \alpha \\ \beta \end{bmatrix}, \mathbf{S} \bigg ) \\
531531
\mathbf S & = \begin{pmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{pmatrix} \mathbf R \begin{pmatrix} \sigma_\alpha & 0 \\ 0 & \sigma_\beta \end{pmatrix} \\
532532
\alpha & \sim \text{Normal} (0, 10) \\
533533
\beta & \sim \text{Normal} (0, 1) \\
@@ -776,24 +776,24 @@ d <-
776776
My math's aren't the best. But if I'm following along correctly, here's a fuller statistical expression of our cross-classified model.
777777

778778
\begin{align*}
779-
\text{pulled\_left}_i & \sim \text{Binomial} (n = 1, p_i) \\
780-
\text{logit} (p_i) & = \alpha_i + (\beta_{1i} + \beta_{2i} \text{condition}_i) \text{prosoc\_left}_i \\
781-
\alpha_i & = \alpha + \alpha_{\text{actor}_i} + \alpha_{\text{block\_id}_i} \\
782-
\beta_{1i} & = \beta_1 + \beta_{1, \text{actor}_i} + \beta_{1, \text{block\_id}_i} \\
783-
\beta_{2i} & = \beta_2 + \beta_{2, \text{actor}_i} + \beta_{2, \text{block\_id}_i} \\
779+
\text{pulled_left}_i & \sim \text{Binomial} (n = 1, p_i) \\
780+
\text{logit} (p_i) & = \alpha_i + (\beta_{1i} + \beta_{2i} \text{condition}_i) \text{prosoc_left}_i \\
781+
\alpha_i & = \alpha + \alpha_{\text{actor}_i} + \alpha_{\text{block_id}_i} \\
782+
\beta_{1i} & = \beta_1 + \beta_{1, \text{actor}_i} + \beta_{1, \text{block_id}_i} \\
783+
\beta_{2i} & = \beta_2 + \beta_{2, \text{actor}_i} + \beta_{2, \text{block_id}_i} \\
784784
\begin{bmatrix} \alpha_\text{actor} \\ \beta_{1, \text{actor}} \\ \beta_{2, \text{actor}} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_\text{actor} \end{pmatrix} \\
785-
\begin{bmatrix} \alpha_\text{block\_id} \\ \beta_{1, \text{block\_id}} \\ \beta_{2, \text{block\_id}} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_\text{block\_id} \end{pmatrix} \\
785+
\begin{bmatrix} \alpha_\text{block_id} \\ \beta_{1, \text{block_id}} \\ \beta_{2, \text{block_id}} \end{bmatrix} & \sim \text{MVNormal} \begin{pmatrix} \begin{bmatrix}0 \\ 0 \\ 0 \end{bmatrix} , \mathbf{S}_\text{block_id} \end{pmatrix} \\
786786
\mathbf S_\text{actor} & = \begin{pmatrix} \sigma_{\alpha_\text{actor}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{actor}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{actor}}} \end{pmatrix}
787787
\mathbf R_\text{actor} \begin{pmatrix} \sigma_{\alpha_\text{actor}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{actor}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{actor}}} \end{pmatrix} \\
788-
\mathbf S_\text{block\_id} & = \begin{pmatrix} \sigma_{\alpha_\text{block\_id}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{block\_id}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{block\_id}}} \end{pmatrix}
789-
\mathbf R_\text{block\_id} \begin{pmatrix} \sigma_{\alpha_\text{block\_id}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{block\_id}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{block\_id}}} \end{pmatrix} \\
788+
\mathbf S_\text{block_id} & = \begin{pmatrix} \sigma_{\alpha_\text{block_id}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{block_id}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{block_id}}} \end{pmatrix}
789+
\mathbf R_\text{block_id} \begin{pmatrix} \sigma_{\alpha_\text{block_id}} & 0 & 0 \\ 0 & \sigma_{\beta_{1_\text{block_id}}} & 0 \\ 0 & 0 & \sigma_{\beta_{2_\text{block_id}}} \end{pmatrix} \\
790790
\alpha & \sim \text{Normal} (0, 1) \\
791791
\beta_1 & \sim \text{Normal} (0, 1) \\
792792
\beta_2 & \sim \text{Normal} (0, 1) \\
793793
(\sigma_{\alpha_\text{actor}}, \sigma_{\beta_{1_\text{actor}}}, \sigma_{\beta_{2_\text{actor}}}) & \sim \text{HalfCauchy} (0, 2) \\
794-
(\sigma_{\alpha_\text{block\_id}}, \sigma_{\beta_{1_\text{block\_id}}}, \sigma_{\beta_{2_\text{block\_id}}}) & \sim \text{HalfCauchy} (0, 2) \\
794+
(\sigma_{\alpha_\text{block_id}}, \sigma_{\beta_{1_\text{block_id}}}, \sigma_{\beta_{2_\text{block_id}}}) & \sim \text{HalfCauchy} (0, 2) \\
795795
\mathbf R_\text{actor} & \sim \text{LKJcorr} (4) \\
796-
\mathbf R_\text{block\_id} & \sim \text{LKJcorr} (4)
796+
\mathbf R_\text{block_id} & \sim \text{LKJcorr} (4)
797797
\end{align*}
798798

799799
And now each $\mathbf R$ is a $3 \times 3$ correlation matrix.

0 commit comments

Comments
 (0)